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Background: Until recently, the explosive growth of research on
RNA that followed the discovery of its catalytic properties and the
accumulation of a wealth of functional data were not accompanied
by similar progress in the X-ray crystallographic determination of
RNA structure. Chemical probing, various spectroscopic tech-
niques, solution NMR, and modeling were the main sources of
information regarding the three-dimensional structure of RNA
beyond simple double helical fragments that had either canonical
geometry or contained non-standard base pairs. Twenty years
clapsed between the report of the first single crystal structure of an
RNA, the phenylalanine transfer RNA, and the second one of an
RNA molecule involving relatively complex tertiary structures, the
hammerhead ribozyme. Fortunately, this situation has now
changed, and the last five years have brought a steady flow of excit-
ing new RNA crystal structures.

Results: RNA has become the focus of an increasing number of
structural biology studies. Improvements in the chemical and
enzymatic synthesis of RNA, sparse matrix crystallization screens
aailored to RNA, and crystal engineering have paved the way to
RNA crystals that are suitable for structure determination at high
resolution. Recently reported crystal structures of RNA molecules
that have complex tertiary interactions include the hammerhcad.
hepatitis delta virus (HDV), Tetrahymena fhermopbtla group |
intron ribozymes, the P4—P6 domain of that intron, a lead-depen-
dent ribozyme, a 29-nucleotide fragment of rat 288 ribosomal
RNA containing the sarcin/ricin loop (SRL), the HIV-1 #rans-acti-
vation response (TAR) domain, a 62-nucleotide domain of
Escherichia coli 5S rRNA, the RNA pseudoknot from beet western
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for growing crystals of RNA (23,91) and
improved strategies for structure determic
nation (12,13) have helped to dramatical-
ly change this situation. A dozen crystal
structures of_ RNAs, among them four
catalytic species, have been reported over
the last five years (Table 1). Moreover, a
large number of RNA structures were
determined by solution NMR and, simi-
larly, the database of RNA-protein com-
plex structures, analyzed by both NMR
and X-ray crystallography, is growing
steadily. However, in this review we will
focus on recent crystal structures of RNA
alone and summarize some of the struc-
tural and functional insights that were
gained from them.

2. RESULTS AND DISCUSSION

In the following sections we will
briefly describe each of the recently
determined RNA crystal structures and
discuss biological implications and
remaining questions. However, we have
kept at a minimum the description of the
accumulated data for the RNAs prior to
their crystal structure determinations and
the reader is referred to the cited primary
sources and reviews for more background
information. An overview of . th‘e
observed tertiary structural modifs is
given in Table 2.
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The crystal structure of the catalytic
core of this group 1 intron was deter-
mined at 5 A resolution (41). The frag-
ment comprises the P4-P6 domain
descri

in the previous section and the
P3-P9 domain that consists of five

helices including P8, P3, P7, and P9 (a
figure with the details of the secondary
structure of the T thermophila ribozyme
can be found in Reference 41 by Golden
and coworkers). However, the fragment
lacks the second substrate of the group 1
ribozyme, the 5"-splice site within the P1
duplex. The conformation of the P4-P6
domain in the structure of this 247-
nucleotide core appears more or less
unchanged compared with the crystal
structure of the isolated domain (Figure
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4. TECHNIQUES

4.1 RNA synthesis and purification
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