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Introduction

The discovery that complementary fragments of DNA
can cause the transcription arrest of selected genes [1, 2]
has launched a new field of drug development in which
early clinical trials are now proceeding [3-7]. The idea of
using antisense-mediated gene inhibition as an alternative
to conventional chemotherapy is particularly exciting for
malignant brain tumors, since results with standard che-
motherapy have been disappointing. The term “antisense’
refers to the fact that the nucleic acids synthesized are
complementary (in an antiparallel orientation) to the cod-
ing (i.e. ‘sense’) genetic sequence of the target mRNA [4,
6, 8]. Two main types of antisense treatment have been
employed to date: (1) transfection of cells with antisense
cDNA, and (2) treatment of cells with antisense oligo-
deoxynucleotides (ODN5s). Antisense constructs are also
used in the laboratory as probes for the detection of spe-
cific mRNA sequences in cells or tissue specimens.

In order to be useful therapeutically, an antisense con-
struct must: (1) exhibit stability in the physiologic envi-
ronment; (2) be taken up and retained by the target cells;
(3) specifically bind target mRNA; (4) successfully block
expression of the target gene; (5) be free of unwanted toxic
and nonspecific side effects, and (6) be easily synthesized
in sufficient quantities to facilitate clinical use [4, 9-12].
Antisense therapy is attractive due to its theoretical speci-
ficity [12-15], and (to date) relative lack of known adverse
effects, particularly when the vector or ODN is adminis-
tered directly into the CNS [7, 16-19].
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Use of Antisense Vectors and
Oligodeoxynucleotides in
Neuro-Oncology

Antisense cDNA versus ODNs: Background and
Considerations for Use in Neuro-Oncology

Antisense mRNA control was first demonstrated for
ColEl, a bacterial DNA plasmid [8, 20]. Posttranscrip-
tional regulation of gene expression using the antisense
approach has now been extensively studied. Typically,
exogenous antisense cDNA constructs are introduced into
cultured cells by plasmid transfection or microinjection.
The antisense sequence is then transiently transcribed
within the cell from the inserted DNA expression vector.
The antisense vector strategy has been successfully used
in vitro against glioblastoma cells for gene targets includ-
ing basic fibroblast growth factor (bFGF), vascular endo-
thelial growth factor (VEGF), insulin-like growth factor 1
(IGF-1), protein kinase C, isotype o (PKCa), the uroki-
nase receptor, transforming growth factor-p1, calmodulin
and E2F-1[21-29].

Often in such studies, antisense-treated and control
tumor cells are then implanted subcutaneously or intrace-
rebrally into experimental animals and the growth of anti-
sense-treated tumors is compared to control tumor
growth. In this way, antisense-treated cells have been
shown to be less tumorigenic than control glioblastoma
cells. For true in vivo studies of tumor treatment using an
antisense vector, however, the target tumor cells would
have to be infected with a replication-defective virus
administered to the host animal. In comparison with the
cDNA approach, antisense ODNs do not require a viral
vector delivery system; they are also easier to synthesize
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Fig. 1. Backbone structure of phosphorothioate (A) and methyl-
phosphonate (B) ODNs.

and modify [10, 12, 30, 31]. Therefore, the antisense
ODN approach has been much more widely used.
Unmodified ODNs are polyanions with a phospho-
diester backbone. They are very rapidly degraded under
physiological conditions primarily by 3"-exonucleases [10,
11, 32, 33]. ODN modifications are used to retard degra-
dation, and to improve entry into cells and mRNA bind-
ing [34]. The phosphorothioate modification of the oligo-
nucleotide backbone (fig. 1A), in which a sulphur atom
replaces one of the oxygen atoms in the phosphate group,
produces an oligonucleotide which is more resistant to
nuclease digestion. Another variation of the backbone
produces the methylphosphonate modification (fig. 1B)
[35, 36]. This produces an uncharged molecule, which is
less susceptible to nuclease digestion, and less soluble in
water [4, 32, 37]. A phosphoramidate modification has
also been described [38, 39].
Uptake of ODNs by cells is believed to occur by fluid-
phase pinocytosis and/or receptor-mediated endocytosis
[30, 40]. Cellular entry is dependent upon ODN structure,
cell type, and treatment conditions [41]. Enhanced deliv-
ery of ODN to cells has been achieved through coadmin-
istration of cationic lipids or by linking them to peptides
or hydrophobic moieties, among other methods [7, 37, 40,
42, 43]. In considering access to the CNS, use of the rela-
tively lipophilic methylphosphonates — or a liposome
delivery system [44, 45] - could be advantageous.
Once inside the cell, antisense ODNs must (1) leak out
or be released from the vesicles, then (2) bind (i.e. hybrid-
ize) to the target mRNA template, in order to block suc-
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cessful translation of the corresponding protein [17, 41,
46, 47]. Stable hybridization usually requires an ODN of
15 bases or longer. The bound ODN-mRNA complex is
termed the ‘heteroduplex’ (fig. 2) because it contains ribo-
nucleic and deoxyribonucleic acid. The more specific part
of the mRNA targeted is often at the 5° end of the trans-
cript, spanning the translation initiation codon [31, 37].
mRNA inactivation occurs either through steric blocking
of the ribosome complex, or by triggering mRNA cleavage
by RNase H [6, 13, 33, 41, 48-5 1]. RNase H sensitivity is
dependent upon the backbone modification [41, 51]. An-
tisense ODNs can also interfere with gene expression by
triple-helix formation, in which the ODN binds double-
stranded DNA in the nucleus [13, 17, 40, 52-55].

Ingenious antisense agents called ‘ribozymes’ have also
been designed. Ribozymes induce catalytic cleavage of
target RNA by adding a sequence which has natural self-
splicing activity [17, 36, 40, 56]. In carrying out the
mRNA cleavage, the ribozyme itself is not altered, and
can therefore bind to and cleave additional mRNA mole-
cules [40, 56]. The cellular uptake and subcellular distri-
bution of a ribozyme targeted to epidermal growth factor
receptor mRNA has been studied in U87-MG glioma cells
571

ODN Targeting of Brain Tumors

Studies of intravenous injection of phosphorothioate
ODNs have shown a plasma half-life of !/,—1 h. Steady-
state plasma levels can be achieved with repeated daily
intravenous injections [7, 32, 58]. Animal studies of ODN
biodistribution have shown that ODNs administered sys-
temically (as negatively charged molecules of approxi-
mately 5 kDa) enter the brain only in extremely small
quantities [5, 32, 37, 58, 59]. Because of this, direct injec-
tion (or osmotic minipump infusion) into the CSF, brain
parenchyma or tumor bed has been advocated [4, 10, 16,
18, 60, 61]. Figure 3 shows a nude rat being implanted
subcutaneously with an Alizet™ osmotic minipump, for
the purpose of delivering antisense ODNs directly into
the bed of an implanted brain tumor.

Animal studies of intraventricular administration of
ODNSs have shown that (as with systemic administration)
phosphodiester ODNs are rapidly degraded, whereas
phosphorothioate ODNSs are resistant to degradation and
cleared in a manner consistent with bulk flow [60, 62].
Studies of intraventricular phosphorothioate ODN infu-
sion lasting 1 week did not show any evidence of toxicity,
yet the ODNs permeated the brain extensively and were
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Fig. 2. Three-dimensional representation of the bound ODN-
mRNA complex, the ‘heteroduplex’. The mRNA template is repre-
sented in gray, the ODN in white (arrows). The 3 mRNA end is at the
top of the figure. Formation of the heteroduplex blocks translation
either through steric hindrance or activation of RNase H.

taken up by astrocytes [60, 62]. Other investigators have
confirmed the superiority of phosphorothioate ODNs for
CNS administration, the cellular uptake and biodistribu-
tion of intracranially administered ODNs, and their ap-
parent lack of adverse effects [16, 63-66]. ODNs may be
more stable within the CNS than in other bodily compart-
ments [67]. Direct ODN infusion has been widely used to

Antisense Technology in Neuro-Oncology

Fig. 3. Photograph of a nude rat being implanted with a subcuta-
neous Alizet™ osmotic minipump. Such pumps can be used to deliv-
er ODNs to the CSF or tumor bed of experimental animals.

block the transcription of many different genes in nonneo-
plastic rat brain [see 9]. Some therapeutic effects have
been seen with administration of a single ODN dose
[67].

Reported target genes for antisense ODN therapy in
glioma cells in vitro have included bFGF, c-erb B, c-myb,
c-mye, c-sis, CD44, p34cdc2, mdm2, IGF-1, PDGEF,
TGF-B, PKCa, tumor necrosis factor, urokinase, the uro-
kinase receptor and S1008 protein [10, 16, 52, 54, 55, 68—
83). For cultured medulloblastoma cells, Liu et al. [84]
used antisense ODNs to block expression of leukemia
inhibitory factor (LIF). LIF down-modulation was
thought to result in a decrease in cellular proliferation.
Regarding in vivo brain tumor studies, Yazaki et al. [18]
reported the use of a phosphorothioate ODN directed
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against PKCa, which, when given intraperitoneally,
showed efficacy against U-87 (human glioblastoma) cells
grown subcutaneously and intracerebrally, in mice. Inter-
estingly, the administration of antisense-treated tumor
cells has been shown to trigger an antitumor response in
rats, leading to tumor regression [85].

Obstacles to Clinical Use of ODNs in
Neuro-Oncology

Nonspecific effects of ODN treatment of cells have
been reported, particularly for phosphorothioated ODNs
used at concentrations above 20-50 uA/ [4, 16, 54, 70, 71,
86-89]. Nonspecific effects may in some cases be advan-
tageous, such as the inhibition of the proliferation and/or
migration of glioblastoma cells [70]. As polyanions,
ODNSs have been demonstrated to nonspecifically bind
proteins such as VEGF, bFGF, PKC, and protein tyrosine
receptors including the epidermal growth factor receptor
[6, 14, 90, 91]. Phosphorothioated ODNs have also been
reported to cause nonspecific induction of tumor necrosis
factor, induction of Sp1 nuclear transcription factor bind-
ing activity, and inhibition of transferrin receptor expres-
sion [5, 15, 92, 93]. Because of this, treatment controls for
experiments and clinical protocols must be carefully de-
signed.

Systemically administered ODNs are accumulated by
the components of the reticuloendothelial system. In ani-
mal studies, elevation of liver enzymes, splenomegaly,
immune stimulation, thrombocytopenia, prolongation of
the activated partial thromoplastin time and/or liver fail-
ure have been reported [6, 67, 90, 94]. Some of these
effects were found to be dependent on ODN base se-
quence, backbone modification and/or dosage schedule
[67]. Direct tumor bed infusion would be expected to
allow these effects to be avoided. In one report of a possi-
ble adverse effect on the CNS, an ODN injected into rat
brain was found to cause an inflammatory response, with
induction of interleukin 6 expression [95].

Even with acceptable toxicity, adequate ODN entry
into tumor cells, and translation arrest of the target gene,
successful treatment of malignant tumors is not likely to
be an easy task. Malignant gliomas are known to be heter-
ogeneous; different sets of genes producing the malignant
phenotype may be expressed in different patients. Block-
ing one molecular pathway might simply result in the acti-
vation of an alternative pathway, allowing cancer cells to
continue to proliferate and invade normal brain [9]. Com-
bination therapy with different ODNs, or use of ODNSs in
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conjunction with conventional chemotherapeutic agents,
may be required to achieve therapeutic efficacy [40, 96,

97].

Clinical Studies and Future Prospects

The impressive advances made in molecular biology
over the past two decades first led to the identification of
potential targets for gene-targeted therapy and have now
resulted in automated commercial production of mole-
cules capable of specifically disrupting the activity of
these targets. A large amount of experimental data rele-
vant to the therapeutic use of antisense ODNs has been
gathered over the past decade [9, 34]. Antisense ODN
treatment of cancer cells can certainly be used to block
gene expression in vitro. Early results with ODNs admin-
istered in animal brain tumor studies have also been
encouraging [16, 18].

Clinical trials with ODNs are now proceeding for sev-
eral different diseases, including cancer [6, 7, 67, 90, 98].
Tumor genes that are being targeted clinically include c-
myb, bel-2, Ha-ras, PKCa, p53 and c-raf kinase [6, 67,
94]. The results of the first phase I trials of a phosphoro-
thioated ODN targeting p5S3 mRNA have been reported
[90, 98, 99]. No toxicity was observed in patients who
received 0.05-0.2 mg/kg/h ODN i.v. for 10 days. A phase
I study for malignant brain tumors currently underway
involves the systemic administration of an anti-PKCa
ODN (Isis Pharmaceuticals, Inc., Carlsbad, Calif.). Dou-
bly-modified ODNs are currently under development [6,
11, 41, 100]. The potential for antisense technology to
develop antineoplastic agents that are useful clinically has
been described as ‘vast’ [37]. Successful clinical use of
antisense ODNs will become increasingly more likely,
however, as their pharmacokinetics and potential side
effects are more clearly delineated, and the appropriate
chemical modifications and gene targets identified.
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