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Abstract

Recent studies have unveiled the molecular machinery responsible
for the biological clock in cyanobacteria and found that it exerts
pervasive control over cellular processes including global gene ex-
pression. Indeed, the entire chromosome undergoes daily cycles
of topology/compaction! The circadian system comprises both a
posttranslational oscillator (PTO) and a transcriptional/translational
feedback loop (TTFL). The PTO can be reconstituted in vitro with
three purified proteins (KaiA, KaiB, and KaiC) and ATP. These are
the only circadian proteins for which high-resolution structures are
available. Phase in this nanoclockwork has been associated with key
phosphorylations of KaiC. Structural considerations illuminate the
mechanism by which the KaiABC oscillator ratchets unidirectionally.
Models of the complete in vivo system have important implications for
our understanding of circadian clocks in higher organisms, including
mammals. The conjunction of structural, biophysical, and biochemical
approaches to this system has brought our understanding of the molec-
ular mechanisms of biological timekeeping to an unprecedented level.
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DD: constant
darkness

LL: constant light
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BACTERIA HAVE
CIRCADIAN RHYTHMS

Many biological oscillations have been analyzed
biophysically, but most of those oscillators are
of relatively high frequency (e.g., millisecond
to second) and often involve ionic fluxes across
membranes. Circadian rhythms, on the other
hand, are ∼24-h oscillations in biological
processes that are controlled by an endogenous

biochemical pacemaker. The processes for
which activities are choreographed by these
clocks range from gene expression, metabolism,
and cell division, to development and behavior
(12). Circadian rhythms are defined by three
diagnostic properties: (a) persistence of the
oscillations in constant conditions (usually
constant darkness, DD, or constant light,
LL, at constant temperature), (b) temperature
compensation (the period length is only
slightly affected by temperature changes, i.e.,
Q10 ∼0.9–1.1), and (c) entrainment of the
endogenous pacemaker to the environmental
cycle of light and dark (12). Most difficult to
explain from the biophysical perspective are the
precision of this long time-constant oscillator
(∼24 h ± only a few minutes per day) and the
temperature compensation property (which is
true even for cells and tissues from endothermic
animals) (12, 29, 95). However, from an evolu-
tionary perspective, a temperature-dependent
or imprecise clock is likely to be useless as
an endogenous estimator of environmental
time (12, 80). Therefore, a ∼24-h clock
with the conserved properties of temperature
compensation, entrainment, and precision
has been the product of natural selection in
organisms from bacteria to human. What has
not been conserved among cyanobacteria,
fungi, plants, and animals are the sequences
of the proteins, which are the gears and cogs
of these clocks. This implies that circadian
clocks have convergently evolved multiple
times in response to the selective pressure of
an environment with daily cycles (83).

The prokaryotic cyanobacterium Synechococ-
cus elongatus PCC7942 has proven advantageous
for circadian clock research (10, 43). Cyanobac-
teria have worldwide importance. The marine
cyanobacterium Prochlorococcus marinus is
possibly the most abundant photosynthetic
organism on earth and certainly contributes a
large proportion of total global photosynthetic
activity (74). Moreover, cyanobacteria are
being enlisted as platforms for production of
biofuels. This includes S. elongatus, which is a
unicellular bacterium that depends on photo-
synthesis autotrophically and therefore could
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be used to produce biofuels by using sunlight
as an inexpensive energy source (4, 5). Until
the late 1980s/early 1990s, circadian biologists
were reluctant to believe that organisms as
simple as prokaryotes could have evolved an
elaborate circadian timing mechanism (10, 34);
they reasoned that a rapidly dividing bacterium
whose lifetime was less than one day had no use
for a timing mechanism that extended farther
than its lifetime (80). However, S. elongatus can
divide as rapidly as once every 5–6 h and can
still show circadian rhythms without significant
perturbation of its circadian pacemaker (32, 42,
55, 59). At this time, there is no question that
the ∼24-h rhythmic phenomena exhibited by
S. elongatus are regulated by a bona fide
circadian system (10, 43).

The circadian oscillator in S. elongatus has
uniquely favorable characteristics for biophysi-
cal, biochemical, and genetic analyses (10). It is
the only organism for which we have full struc-
tural information for the key clock proteins (in
this case, KaiA, KaiB, and KaiC). S. elongatus
has a genome size of 2.7 Mbp (smaller than that
of Escherichia coli ), and genetic tools abound
(3, 21). Cyanobacteria are one of the few sys-
tems in which the adaptive significance of cir-
cadian programs has been rigorously tested (12,
31, 73, 103). Most significantly from a biophys-
ical perspective, it is the only circadian system
in which a molecular oscillator can be studied
in vitro; persistence, precision, and temperature
compensation can be reconstituted in vitro with
three purified proteins (KaiA + KaiB + KaiC)
and ATP (68). Although biophysical analyses of
this oscillator have begun (6, 23, 63, 65, 81), we
are at the watershed of understanding how this
molecular oscillator really works (33, 53).

WHAT’S RHYTHMIC? OUTPUTS
OF THE PACEMAKER IN
CYANOBACTERIA

The first persuasive evidence for circadian
rhythms in a prokaryote came from an in-
vestigation that studied the nitrogen-fixing
cyanobacterium Synechococcus RF1 (10, 16).
In this cyanobacterium, nitrogen fixation is

regulated by the circadian clock such that it
is maximal in the night phase. The enzyme
that carries out the reduction of atmospheric
nitrogen to ammonia is nitrogenase, an enzyme
that is inhibited by oxygen. Because photo-
synthesis produces oxygen throughout the day
and nitrogenase is sensitive to oxygen, turning
on nitrogen fixation in the nocturnal phase
allows the same cell to perform incompatible
metabolic events: photosynthesis during the
day and nitrogen fixation during the night (57).
This is an example of how the evolutionary
emergence of circadian systems may have
enhanced fitness by optimizing temporal
metabolic programs. In our search for a
genetically malleable cyanobacterium, we and
our collaborators settled on S. elongatus PCC
7942 (which incidentally does not fix nitro-
gen). The genetic properties of this organism
facilitated our discovery of globally regulated
gene expression by a circadian timekeeper.
We use bacterial luciferase as a reporter of
clock-regulated promoter activity; initially we
studied the activity of the promoter for the
psbAI gene (43), but we subsequently discovered
that virtually all promoters in the S. elongatus
genome are regulated by the circadian system
(50). Figure 1a depicts rhythms based on a
few selected promoter::reporter constructs,
including the cyanobacterial promoters for the
psbAI, kaiA, kaiBC, purF, and ftsZ genes. The
majority of promoters are activated in the sub-
jective day phase. However, the purF promoter
is activated in the nocturnal phase (Figure 1a),
an interesting observation considering that its
gene product is involved in an oxygen-sensitive
pathway ( purF encodes the enzyme catalyzing
the initial step of de novo purine nucleotide
biosynthesis; 49). Thus, the circadian regula-
tion of the expression of this S. elongatus gene
might constitute another example of temporal
separation similar to that found for nitrogenase
in Synechococcus RF1 (10, 16, 49, 50).

As expected from the global control of
promoter activity, there is pervasive control
by the circadian clock of mRNA abundances
in cyanobacteria. In S. elongatus and other
cyanobacterial species (Synechocystis sp. PCC
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Figure 1
Circadian rhythms in Synechococcus elongatus. (a) Rhythms of luminescence emanating from cells transformed with bacterial luciferase
(luxAluxB) fused to the promoters for the psbAI, purF, kaiBC, ftsZ, and kaiA genes. This plot illustrates circadian rhythms of gene
expression. (b) Supercoiling of an endogenous plasmid indicates a circadian rhythm in chromosomal topology. In the subjective night
topoisomers of the plasmid are more relaxed (R), whereas in the subjective day they are more supercoiled (SC) (104). (c) Gyrase
inhibition results in an immediate change in gene expression due to drug-induced relaxation. Genes that have higher expression during
relaxed circadian times immediately increase in gene expression ( purF, red ), whereas genes that have lower expression during relaxed
circadian times immediately decrease in gene expression (kaiC, blue) (from Reference 100 with permission). (d ) Micrographs of
cyanobacterial cells at different times in constant light. Brightfield images (upper panels) show growth and cell division as a function of
approximate circadian time. Observed luminescence (lower panels) reveals circadian rhythms in single cyanobacterial cells. The
luminescence reporter was the psbAI promoter driving expression of bacterial luciferase. (e) Quantification of bioluminescence from a
single cell as it divides in constant light. Cell division is indicated by differently colored traces for each daughter cell. (Panels d and e
courtesy of Dr. Irina Mihalcescu from Reference 55). ( f ) Cell division in a population of S. elongatus cells is restricted by the circadian
system. For the first 36 h the cells are in a light/dark (LD) cycle as indicated by the black and gray bars at the top of the panel. For the
remaining time the cells are in constant light (LL). The cell count shows plateaus (red arrows) when the cells stop dividing. Plateaus
occur during the night in LD cycles as well as the subjective night of LL. The average doubling time (DT) as indicated by the diagonal
line was 10.5 h (59).

6803, Crocosphaera watsonii, and Prochlorococcus
MED4), microarray analyses have confirmed
that the transcripts of 10%–80% of genes
in the genome exhibit circadian and/or daily

oscillations of abundance (24, 44, 87, 100, 115).
However, whereas promoter activity indicated
essentially 100% of the genes are expressed
rhythmically (50), microarray analysis in
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LD: light/dark cycle

S. elongatus found that only 30%–60% of
mRNA abundances are rhythmic (24, 100).
Presumably posttranscriptional regulation
accounts for the differences in these two
measurements. Transcripts that are either very
unstable or very stable may be transcribed
rhythmically, but the steady-state levels of the
message may nevertheless be nearly constitu-
tive. In initial studies of S. elongatus rhythms,
the clarity of the psbAI promoter activity
rhythm was much cleaner than that of psbAI
mRNA abundance, implying posttranscrip-
tional modulation of transcript abundances
(43). These data suggest that in S. elongatus
measurements of promoter activity are a more
accurate indicator of circadian control over
gene expression than of transcript abundance.
An amusing aspect of studying gene expression
in S. elongatus is that rhythmic gene expression
does not always translate into rhythms of the
implicated processes. For example, even though
psbAI encodes a key photosynthesis protein
(the three psbA genes encode the D1 protein of
photosystem II), implying that photosynthesis
is rhythmically regulated, experimental mea-
surements of photosynthetic rate in S. elongatus
have shown that there is a daily rhythm (in
light/dark, LD) of photosynthetic capacity but
not a circadian rhythm in LL (112).

How are the global rhythms of promoter
activity mediated from the central clockwork?
Two alternative scenarios have been proposed:
a traditional transcription factor network
and an oscillating chromosome model. The
transcription factor model is based on studies
implicating the putative transcription factor
RpaA, which appears to be coupled to the
cyanobacterial KaiABC oscillator by the histi-
dine kinase SasA (28, 90). New data implicate
other factors in this output pathway, including
LabA and CikA (92). CikA may be an important
component of both the input (86) and the out-
put pathways. The other model for circadian
regulation of global gene expression is the
oscillating chromosome hypothesis (60, 104).
One argument against mediation of global
regulation solely by transcriptional factors that
have coevolved with cis elements of S. elongatus

promoters is that heterologous promoters from
E. coli such as conIIp and trcp exhibit circadian
activity in S. elongatus (38, 67). Chromosomal
topology/compaction provides a high-level way
to influence promoter activity. In S. elongatus
the circadian clock controls pervasive changes
in the compaction and topology of the entire
chromosome. Dramatic circadian changes are
seen for both compaction/decompaction (vi-
sualized by DNA-binding dyes) (88) and DNA
topology (indicated by plasmid supercoiling)
(104) (Figure 1b). DNA topology and torsion
critically affect transcriptional rates, and it is
therefore reasonable to hypothesize that such
circadian changes in chromosomal topology
could be partially responsible for daily mod-
ulation of promoter activity (56, 60, 88, 104).
We have termed this hypothesis the oscillating
nucleoid, or oscilloid model (60, 104).

The role of chromosomal topology in
regulating circadian gene expression has
always been a “chicken or the egg” dilemma.
In other words, is transcription rhythmic
because the chromosome is being rhythmically
supercoiled (i.e., the oscilloid hypothesis), or is
the chromosome cyclically supercoiled because
transcription is rhythmic? Recent results favor
the oscilloid model (100). Gyrase is a key
enzyme that regulates DNA superhelicity,
and it is inhibited by the drug novobiocin,
which thereby relaxes DNA. When novobiocin
is added to S. elongatus cells at a phase in
which the chromosome is normally negatively
supercoiling, there is an immediate change in
gene expression, and genes that are normally
expressed in antiphase (kaiBC versus purF,
Figure 1a) respond in opposite directions
(Figure 1c). This result strongly supports the
oscilloid hypothesis that kaiBC expression is
turned on by negatively supercoiled DNA (and
purF is turned off), and when the chromosome
relaxes 12 h later, the relative expression levels
of these two classes of genes flips (100). The
two available scenarios for global expression
patterns (oscilloid hypothesis versus transcrip-
tional regulation by factors such as RpaA, SasA,
LabA, and CikA) do not necessarily exclude
each other. An analysis of stochastic gene
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expression in cyanobacteria (8) provides sup-
port for the idea that circadian gene expression
is regulated by multiple factors, e.g., changes in
both DNA topology and transcriptional factor
activity.

Rhythmicity has been recorded both for en-
tire populations of cells (Figure 1a) and for
a single cyanobacterial cell, as demonstrated
by luminescence rhythms from the luciferase
reporter fused to the psbAI promoter (55)
(Figure 1d ). Remarkably, this study also
demonstrated that cell division does not perturb
the circadian oscillator (Figure 1e). The clock
of a daughter cell ticks in phase with the clock
of the mother cell. This is consistent with the
outcome of analyses of circadian timing in pop-
ulations of dividing cells. Whether S. elongatus
cells undergo rapid or slow division (or whether
they do not divide at all) does not perturb the
intrinsic ∼24-h period of the circadian system
(42, 59, 61). Moreover, the circadian oscillator
specifies a checkpoint for division by regulating
the timing at which cell division is permitted. It
can be experimentally demonstrated that a pop-
ulation of cells rapidly dividing in LL (average
doubling time of 10.5 h) will have cell division
restricted by the circadian system (Figure 1f ).
This circadian gating of cell division in S. elon-
gatus has been studied recently by the Golden
laboratory, and they reported that elevated
ATPase activity of KaiC may provide the

circadian checkpoint in cyanobacteria (11).
Moreover, recent studies suggest that cell
division in S. elongatus is influenced by
the circadian-implicated genes cikA and cdpA
(11, 51).

Pervasive changes in metabolism, cellular
structure, and gene expression that accom-
pany cell division do not perturb circadian
timing. This imperturbability appears to be a
general property of circadian pacemakers in
cyanobacteria and in eukaryotes, and it might
be argued that this constitutes evidence for a
cyanobacteria-like pacemaking mechanism in
eukaryotes (32).

THE TIMEKEEPING
MECHANISM: KaiA, KaiB, and KaiC
ARE THE CLOCKWORKS’ GEARS

The proteins KaiA, KaiB, and KaiC constitute
the central components of the clockwork in
S. elongatus (22). The kaiA, kaiB, and kaiC
genes were first identified in 1998, and three-
dimensional structures for the proteins they
encode became available in 2004 (13, 15, 20, 76,
98, 111). They remain the only core circadian
clock proteins for which full-length structures
have been determined. KaiA is a domain-
swapped dimer with an N-terminal bacterial
receiver domain and a C-terminal α-helical

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 2
Structures, rhythmic phosphorylation, and associations of KaiA, KaiB, and KaiC. (a) Shown from left to
right are the crystal structures of the S. elongatus KaiA dimer (111), the Synechocystis KaiB tetramer (20), and
the S. elongatus KaiC hexamer (76, 78). Individual subunits of the multimeric proteins are represented in
different colors. In the case of KaiC, the subunits are arranged around a central channel that runs vertically
(behind the dark blue-colored subunit in this depiction (13). (b) Time courses of rhythmic KaiC
phosphorylation in vivo and in vitro as assessed by SDS-PAGE (the lowest bands are hypophosphorylated
KaiC and the upper bands are various forms of phosphorylated KaiC). Top: KaiC phosphorylation in vivo at
different times in constant light (samples were collected every 4 h in constant light and immunoblotted).
Bottom: KaiC phosphorylation in the in vitro reaction. Purified KaiA, KaiB, and KaiC were combined with
ATP in vitro and samples were collected every 3 h and processed for SDS PAGE and staining. Four bands
are obvious in these in vitro samples: hypophosphorylated KaiC and KaiC phosphorylated at the S431,
T432, or S431/T432 residues (see labels on the right side of the panel). (c) Rhythms of KaiA·KaiB·KaiC
complex formation during the in vitro cycling reaction. The color coding of the pie charts indicates the
percentage of free KaiC hexamers (blue), KaiA·KaiC complexes (brown), KaiB·KaiC ( green) complexes, and
KaiA·KaiB·KaiC (orange) complexes (63). (d ) Electron microscopy average images of free KaiC hexamers,
KaiA·KaiC complexes, KaiB·KaiC complexes, and presumed KaiA·KaiB·KaiC complexes (63) (color coding
is the same as in panel c).
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bundle, and KaiB adopts a thioredoxin-like
fold and forms dimers and tetramers. KaiC
is by far the largest of the three and exists
as a homohexamer with the appearance of a
double-doughnut (Figure 2a). The kaiC gene
is the result of a gene duplication and KaiC dis-
plays similar N- and C-terminal domains at the
monomeric level (the lobes are referred to as CI

and CII, respectively). Six ATP molecules are
bound between subunits in both the CI and the
CII rings. The astonishing breakthrough from
the Kondo laboratory in 2005 was the report
that a molecular oscillator can be reconstituted
when the three Kai proteins are combined
together with ATP in a test tube (68). This in
vitro oscillator ticks with a ∼24-h period for at
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EM: electron
microscopy

SAXS: small angle
X-ray scattering

least 10 days, with KaiC alternating between
a hypophosphorylated and a hyperphosphory-
lated state (Figure 2b) (23). Mass spectrometry
and X-ray crystallography were used to estab-
lish that KaiC is phosphorylated at S431 and
T432 in the CII lobe (72, 108). There appear to
be no phosphorylation sites in the CI domain.
Phosphorylation of T432 and S431 proceeds
across the subunit-subunit interface (76, 108).

KaiC exhibits both autokinase and au-
tophosphatase activities (27, 71, 85, 107), and
it has been reported that 15 ATP molecules are
rhythmically hydrolyzed per subunit during a
complete in vitro 24-h cycle (93). KaiA serves
as a promoter of the formation of the KaiC hy-
perphosphorylated state, and KaiB antagonizes
KaiA’s actions and promotes a return to the
hypophosphorylated state. Structural and bio-
physical studies have provided insight into the
KaiA·KaiC (78, 97) and KaiB·KaiC complexes
(77). A range of techniques, including gel
filtration chromatography, two-dimensional
gel electrophoresis, negative-stain electron
microscopy (EM), and small angle X-ray scat-
tering (SAXS), have been employed to quantify
the relative levels of KaiC versus KaiA·KaiC
versus KaiB·KaiC versus KaiA·KaiB·KaiC
complexes formed during the in vitro reaction
cycle (Figure 2c,d ) (1, 37, 63). Another
key aspect of the in vivo and in vitro KaiC
phosphorylation cycle is the strict order of
phosphorylation and dephosphorylation of the
two P sites, which involves four steps: (a) T432
phosphorylation, (b) S431 phosphorylation,
(c) T432 dephosphorylation, and (d ) S431
dephosphorylation (Figure 2b) (71, 85). The
vital challenge is to understand the underlying
molecular mechanisms of this clockwork.

GETTING TOGETHER:
CYCLING INTERACTIONS
AMONG THE Kai PROTEINS

KaiA enhances the autokinase activity of KaiC
by binding to a C-terminal peptide from a
subunit of the latter repeatedly and rapidly
(Figure 3) (37, 81). A single KaiA dimer appears
to be sufficient to upregulate phosphorylation

of a KaiC hexamer to saturated levels (18), con-
sistent with the higher abundance of KaiC hex-
amers in vivo relative to KaiA dimers (40). What
is the mechanism underlying KaiA’s function?
NMR spectroscopy established that KaiA binds
to the C-terminal tentacle peptides of KaiC
(97). This interaction unravels an S-shaped loop
within the contacted KaiC subunit as KaiA pulls
the S-loop adjacent to the central channel of
the KaiC hexamer (13). The KaiC crystal struc-
ture revealed that S-loop residues at amino acids
485–497 form hydrogen bonds across subunits
at the periphery of the channel (76). Therefore,
one can expect the disruption of the S-shaped
loop of a single subunit to weaken the inter-
face between adjacent CII lobes and to pro-
mote conformational changes within the CII
ring conducive to phosphorylation at T432 and
S431. A three-dimensional EM structure of
the KaiA·KaiC complex revealed that KaiA as-
sumes at least two orientations above the C-
terminal dome of the KaiC hexamer. In one
orientation, KaiA is tethered to KaiC via a flex-
ible linker (78). In the second orientation, KaiA
is engaged on the KaiC surface, which is sugges-
tive of a transient interaction between an api-
cal loop in the C-terminal domain of a KaiA
monomer and the ATP-binding cleft on KaiC.

Unlike KaiA, which binds as a dimer to the
C-terminal tentacle portion of KaiC, KaiB does
not exhibit any affinity to these tentacles. More-
over, whereas KaiA remains associated with
KaiC during the entire phosphorylation cycle,
KaiB displays a distinct preference for the phos-
phorylated form of the hexamer (37, 63, 71, 85).
Hybrid structural biology approaches including
cryo- and negative-stain EM and X-ray crys-
tallography, along with native PAGE and flu-
orescence methods, revealed that KaiB dimers
bind to the CII ring (77). Thus, EM images
are consistent with KaiB dimers forming a third
layer on top of CII without obscuring the cen-
tral channel. This arrangement serves to pre-
vent KaiA from approaching the ATP-binding
clefts on KaiC, although the KaiA dimer is still
tethered to the C-terminal CII peptide.

More recently, we discovered that al-
though the initial interaction of KaiA with
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Conformational
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Figure 3
Models of the KaiABC oscillator. (a) Diagram representing the mathematical model for the KaiC phosphorylation cycle. The double
circle dumbbell shapes in the center represent KaiC monomers. The KaiC hexamer can associate with and dissociate from KaiA and
KaiB. KaiC hexamers are shown in light blue and dark blue, representing two conformational states (approximately equivalent to kinase
versus phosphatase forms of KaiC). Red dots are phosphates at KaiC phosphorylation sites (residues S431 and T432). Monomer
exchange between KaiC hexamers is depicted with the double-headed arrows in the center. The rates of monomer exchange vary
among KaiC states, with a solid line indicating a high rate and a dashed line indicating a low rate (from Reference 63). (b) Diagram
showing the formation of KaiA·KaiB·KaiC complexes. Starting from the leftmost molecular representation and proceeding clockwise:
during the phosphorylation phase of the cycling reaction, KaiA (red dimers) repeatedly and rapidly interacts with KaiC’s C-terminal
tentacles. (KaiC molecules are the blue double-donut hexamers.) When KaiC becomes hyperphosphorylated (phosphates on T432 and
S431 are depicted as red dots), it first binds KaiB ( green diamonds) stably. Then, the KaiB·KaiC complex binds KaiA, sequestering it
from further interaction with KaiC’s tentacles. At that point, KaiC initiates dephosphorylation. When KaiC is hypophosphorylated, it
releases KaiB and KaiA, thereby launching a new cycle (from Reference 81).

ESR: electron spin
resonance

unphosphorylated KaiC is labile, once KaiC
becomes hyperphosphorylated and binds KaiB,
KaiA is incorporated into a stable A·B·C com-
plex (81). Amazingly, this complex does not
dissociate during a several-hour electrophore-
sis in native PAGE. Moreover, the formation of
this stable complex is not dependent on KaiC’s
tentacles because KaiA and KaiB form the stable
A·B·C complex with the hyperphosphorylated
KaiC489 mutant from which the C-terminal
tentacles have been deleted (81). Our current
hypothesis is that KaiA first repetitively inter-
acts with the tentacles of hypophosphorylated
KaiC to enhance KaiC’s autokinase activity un-
til KaiC is hyperphosphorylated, at which time

the KaiC hexamer undergoes a conformational
change that allows it to form a stable complex
with KaiB (Figure 3b) (27, 33, 37, 39, 63, 81,
97). This stable KaiB·KaiC complex exposes a
novel binding site for KaiA, which sequesters
KaiA in a stable KaiA·KaiB·KaiC complex.
The sequestered KaiA is unable to further
stimulate the autokinase activity of KaiC,
and therefore the autophosphatase activity
dominates such that KaiC dephosphorylates
to its hypophosphorylated conformation from
which KaiB and KaiA dissociate and the cycle
begins anew (Figure 3b) (81). Using electron
spin resonance (ESR) spectroscopy, Mutoh
et al. (65) found that spin-labeled Cys mutants
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of KaiB from the thermophilic cyanobacterium
Thermosynechococcus elongatus directly interacted
with KaiA from the same species. Fluorescence
and native PAGE assays of mixtures of S.
elongatus KaiA and KaiB in the absence of KaiC
did not reveal any interactions between the two
proteins (77). Therefore, either the KaiA-KaiB
interaction revealed by ESR is too transient
to be captured by fluorescence or native gel
analyses, or KaiB binding to KaiC creates a
new interface for KaiA binding in Synechococcus.

KaiC subunits have two critical phosphory-
lation sites, S431 and T432. The role of a third
potentially phosphorylated residue, T426, has
been debated. In the crystal structure of the
KaiC homohexamer from S. elongatus, all six
T432 residues and four of the six S431 residues
were phosphorylated (76, 108). Closer inspec-
tion of the surroundings of the two amino acids
revealed that the protein chain curls between
residues I425 and I430 so that residues D427,
S428, and H429 form a loop in which T426
faces S431. In fact, the last two residues are
closely spaced and the side chain of T426
forms a hydrogen bond with the phosphate
group of S431-P (76, 108). In the absence of
S431 phosphorylation, the two side chains are
too far apart to interact. Single T432A, S431A,
and T426A mutants are arrhythmic, and we
had postulated that T426 might serve as a
third phosphorylation site (108). Subsequently,
we carried out more detailed biochemical
and structural studies on in vitro and in vivo
phosphorylation with T426 mutants (75, 109).
A central question was whether the amino acid
at position 426 must be phosphorylatable, or is
it sufficient for it to form a hydrogen bond with
S431-P? As a test, an asparagine that should
be capable of hydrogen bonding to S431-P
was substituted at position 426. This T426N
mutant displayed the expected hydrogen bond
between 426N and the phosphate on S431
in the crystal structure but was arrhythmic in
vivo (75, 109). This observation and other data
support the idea that position 426 must be phos-
phorylatable for the clock to function properly
(75, 109). In vivo coexpression studies involving

KaiCWT and mutants of KaiC with alternative
residues at position 426 demonstrated dramatic
effects on dominant/recessive relationships
and also revealed that substitutions at T426
alter key properties, such as period, amplitude,
robustness, and temperature compensation.
Together with the finding that mutations
of T426 critically affect the formation of
complexes between KaiC and KaiA/KaiB,
these observations confirmed that T426 is
an important site that regulates the KaiC
phosphorylation status in vivo and in vitro.

The association-dissociation process of Kai
proteins in vivo and in vitro and the stoichiom-
etry of their complexes in vitro have been
analyzed by gel filtration chromatography,
native gel assays, and negative-stain EM (36,
37, 63, 81). SAXS has also been used to study
the dynamics of untagged Kai proteins as they
assemble and disassemble over the in vitro
oscillation (1). SAXS data provided support for
the idea that the initial phase of the cyanobacte-
rial circadian oscillator is determined largely by
the assembly and disassembly of Kai proteins.
Further, the period of the clock was resistant
to intracellular noise, arising from collisions,
crowding, and cytoplasmic viscosity.

WHY TIME IN THE
IN VITRO OSCILLATOR
IS UNIDIRECTIONAL

In the crystal structure of KaiC from S. elon-
gatus, the T432 residues from all six subunits
and the S431 residues from four subunits were
phosphorylated (76, 108). T432’s side chain
oxygen atoms are closer on average to the ATP
γ -phosphate (7.3 Å), compared with those
from the S431 residues (8.4 Å). Once T432
residues are phosphorylated, new stabilizing
interactions are formed across the CII subunits
because the phosphate group of T432 becomes
engaged in a salt bridge to R385 as shown in
Figure 4 (108). While it is reasonable to assume
that local conformational fluctuations will be
more limited after T432 is phosphorylated,
there remains sufficient flexibility at the subunit
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Figure 4
A ratcheting mechanism for unidirectional motion of the KaiABC oscillator. Starting with the unphosphorylated (unphos) form of
KaiC (S/T), KaiC is first phosphorylated on T432 (S/pT), leading to the formation of a salt bridge (solid green line) to R385 on the
adjacent KaiC subunit (blue chain; T432-P shows proximity to E318, as shown by the dashed green line). KaiC then autophosphorylates
on S431, leading to the doubly phosphorylated form (pS/pT) that adds hydrogen bonds (solid green lines) to residues T426 and H429 on
the same KaiC subunit ( pink chain). The formation of these hydrogen bonds makes the reverse reactions unfavorable so that the
KaiABC oscillator is unidirectional during the phosphorylation phase (33). The hyperphosphorylated KaiC (pS/pT) then interacts with
KaiB and initiates monomer exchange and dephosphorylation, forming first pS/T and ultimately unphosphorylated KaiC (S/T) again.
The S/T and pS/T forms of KaiC are inferred and labeled as hypothetical models on the figure because no crystal structures of these
forms have been reported, whereas the S/pT and pS/pT forms have been successfully crystallized and reported (76, 75, 108).

interface to also allow transfer of a phosphate to
S431 in the second step. Once phosphorylated,
S431 can engage in additional hydrogen-
bonding interactions with amino acids (T426
and H429) in the same subunit (Figure 4).
These hydrogen-bonding interactions are
probably crucial because mutation at T426 to
alanine abolishes clock function (108, 109). In
general, S431-P residues are more shielded
inside a pocket formed by the phosphoryla-
tion loop compared with T432-P residues,
which may explain the longer survival of the
former during the dephosphorylation phase
(Figure 2b). Overall, the structural infor-
mation on the phosphorylation events at
the KaiCII subunit interfaces and the inter-
and intrasubunit interactions formed by the
phosphorylated residues indicates that the
number of hydrogen bonds increases while

first T432 and subsequently S431 are phospho-
rylated. This progressive increase in molecular
interaction would make the reverse reactions
unfavorable, causing a built-in ratcheting
mechanism that drives the KaiC oscillator
unidirectionally during the phosphorylation
phase toward T432-P/S431-P (pS/pT) (33)
(Figure 4).

We currently have no clear understanding of
the mechanism of the autophosphatase activity
of KaiC during the dephosphorylation phase.
It is possible but not absolutely necessary that
a conformational change occurs to drive KaiC
forward to the phosphatase state and achieve
dephosphorylation first of T432 and then of
S431 in all six subunits. This order of phos-
phorylation and dephosphorylation events has
been observed in biochemical assays as men-
tioned above (Figure 2b) (71, 85). It appears
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TTFL: transcrip-
tion/translation
feedback loop

that the interaction of KaiB with KaiC facil-
itates the formation of the phosphatase state.
KaiB binds preferentially to a phosphorylated
form of KaiC (specifically, the S431-P state;
71, 85). This behavior is different from that ex-
hibited by KaiA, which can bind various forms
of KaiC (37). Although the crystal structure of
KaiCWT shows the homohexamer captured in
the hyperphosphorylated state, with 10 out of
12 phosphate groups present at S431 and T432
sites (76), there are currently no hints from
the structure regarding the dephosphorylation
mechanism, although Mg2+ serves as a cofactor.
In fact, to date no crystal structure of unphos-
phorylated KaiC has been reported.

A TICKING CLOCKWORK
IN VITRO

The unanticipated finding that the three Kai
proteins together with ATP generate stable
oscillations within a ∼24-hour period in a test
tube (Figure 2b) (68) provided a contradiction
to the dogma that all circadian oscillators
are dependent on a transcription/translation
feedback loop (TTFL) (68, 82, 94, 107). Fur-
thermore, the rates of KaiC phosphorylation,
dephosphorylation, and ATP hydrolysis, as
well as the in vitro rhythm, are all temperature
compensated (64, 68, 93, 94). We take this
as evidence that temperature compensation
is built into the molecular characteristics
of the three Kai proteins and the nature of
their interactions. Temperature compensation
remains an important unresolved question
not just for the cyanobacterial system but for
circadian clocks in general.

Terauchi et al. (93) have proposed that the
rhythm of KaiC ATPase activity constitutes the
most fundamental reaction underlying circa-
dian periodicity in cyanobacteria. An alterna-
tive (and not exclusive) possibility is that ATP
hydrolysis provides the energy needed for con-
formational changes in KaiC. Our results in-
dicate that intermolecular dynamics of KaiA,
KaiB, and KaiC determine the period and am-
plitude of this in vitro oscillator, leading to the
hypothesis that (a) the basic timing loop of the

KaiABC oscillator and (b) its outputs are me-
diated by conformational changes of KaiC in
association with KaiA and KaiB. For exam-
ple, mutations within KaiB that alter affinity to
KaiC modulate the period of this clock in vivo
and in vitro as predicted by mathematical mod-
eling (81). Our interpretation is that the forma-
tion of Kai protein complexes is coupled with
KaiC phosphorylation status; because different
KaiB variants modulate the rate of KaiB·KaiC
formation, they also affect the period of KaiC
phosphorylation (81). At the very least, if the
ATPase activity is the basic timing loop as sug-
gested by Terauchi et al. (93), then the inter-
molecular associations with KaiB must regulate
KaiC’s ATPase activity in a deterministic way.

Now that an in vitro clock system has
been identified, biophysical, biochemical, and
structural tactics can be deployed to analyze
the molecular nature of a circadian clockwork
in a way that was previously impossible. The
time-dependent formation of Kai protein
complexes has been quantified with EM,
gel filtration chromatography, SAXS, and
native gel electrophoresis techniques (1, 9,
37, 63). Throughout the in vitro oscillation,
KaiC exists in all possible combinations
with KaiA and KaiB: free KaiC hexamers,
binary KaiA·KaiC and KaiB·KaiC complexes,
and ternary KaiA·KaiB·KaiC complexes
(Figures 2c,d ). The proportions of these
complexes vary in a phase-dependent manner,
with free KaiC hexamers predominating
at all phases. About 10% of KaiC hexam-
ers are present as KaiA·KaiC complexes
at all phases; by comparison, KaiB·KaiC
and KaiA·KaiB·KaiC complexes are clearly
rhythmic and are most common during the
KaiC dephosphorylation phase (Figure 2c)
(37, 63). KaiC undergoes rhythmic changes
in conformation, phosphorylation status, and
interactions with KaiA and KaiB during the
in vitro oscillation. Our working hypothesis is
that the core of the oscillator is constituted by
rhythmic changes in the conformation of KaiC
that in turn modulate the interactions with
KaiA and KaiB and the activity of transduction
factors such as SasA and RpaA (37, 63, 90).

154 Johnson · Stewart · Egli

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

01
1.

40
:1

43
-1

67
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 V

an
de

rb
ilt

 U
ni

ve
rs

ity
 o

n 
05

/1
3/

11
. F

or
 p

er
so

na
l u

se
 o

nl
y.



BB40CH07-Johnson ARI 13 April 2011 9:55

FRET: fluorescence
resonance energy
transfer

STAYING TOGETHER:
MONOMER EXCHANGE AND
THE MAINTENANCE OF
SYNCHRONY AMONG
HEXAMERS

Cyanobacterial cells in populations behave
as autonomous oscillators that appear to be
unable to communicate phase information
intercellularly (2, 55). Once synchronized,
however, cells in populations remain in sync for
many cycles, implying a robust mechanism for
maintaining a precise, high-amplitude rhythm
inside each cell. Cellular events such as DNA
synthesis, cell division, and metabolic changes
generate “noise” or perturbations that pose a
significant challenge for circadian oscillators
(32, 55, 82). In the case of the in vitro oscillator,
KaiC monomer exchange among different
hexamers is a process that can potentially
synchronize the phosphorylation status of
individual hexamers within a population of
hexamers, thereby sustaining a high-amplitude
oscillation (Figure 3a) (23, 37, 63). Monomer
exchange was first observed using the technique
of pull-down assays with FLAG-tagged KaiC
proteins (37; the FLAG tag is an octapeptide

protein tag with the following sequence:
DYKDDDDK). Because the pull-down
technique can suffer from aggregation/cross-
reactivity problems, we investigated monomer
exchange by fluorescence resonance en-
ergy transfer (FRET). Briefly, a population
of KaiC labeled with IAEDANS [5-((((2-
iodoacetyl)amino)ethyl)amino)naphthalene-1-
sulfonic acid] (EX 336/EM 470 nm) was mixed
with a population of KaiC labeled with MTSF
[2-((5-fluoresceinyl)aminocarbonyl)ethyl
methanethiosulfonate-4-fluorescein] (EX 490/
EM 515 nm). Figure 5a shows the time-
dependent quenching of IAEDANS fluo-
rescence (indicative of FRET) as a gauge of
KaiC monomer exchange. Using this method,
we confirmed that KaiC hexamers exchange
their monomers, but we could not confirm
the earlier report that KaiA inhibited KaiC
monomer exchange (Figure 5b) (37, 63).
Subsequent experiments from the Kondo
laboratory indicated that KaiC monomer
exchange occurs primarily in the dephos-
phorylation phase of the KaiABC in vitro
oscillation (23). Our model simulations show
that phase-dependent monomer exchange
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Figure 5
FRET analysis of KaiC monomer exchange. (a) A sample of KaiC labeled with IAEDANS (EX 336/EM 470 nm) was mixed with a
sample of KaiC labeled with MTSF (EX 490/EM 515 nm). The emission spectrum of the mixture under excitation at 336 nm was
recorded at the following times at 30◦C: 0 h, 0.16 h, 0.5 h, 1 h, 2 h, 4 h, 6 h, and 8 h. The decrease in fluorescence intensity at 470 nm
of IAEDANS-labeled KaiC is indicative of energy transfer due to monomer exchange between the two labeled KaiC populations.
(b) Effect of KaiA and KaiB on monomer exchange. Measurement of monomer exchange between IAEDANS-labeled and MTSF-
labeled KaiC when KaiA (0.05 μg μl−1) or KaiB (0.05 μg μl−1) was added to the mixture of KaiC (0.2 μg μl−1 total concentration).
The decrease in fluorescence intensity at 470 nm was plotted as a function of time. (c) Model prediction of the in vitro KaiABC
oscillation in the presence (blue line) or absence (red line) of phase-dependent monomer exchange (from Reference 63). Abbreviations:
FRET, fluorescence resonance energy transfer; IAEDANS, 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-
1-sulfonic acid; MTSF, 2-((5-fluoresceinyl)aminocarbonyl)ethyl methanethiosulfonate-4-fluorescein.
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PTO:
posttranslational
oscillator

allows the individual KaiC hexamers within
the population of hexamers to maintain an
equivalent level of average phosphorylation,
such that the hexamers remain synchronized
in terms of phospho-status (Figure 5c) (63).
In this fashion, dynamic rhythms of KaiC
phosphorylation can be sustained for at least
10 cycles in vitro (23). Therefore, intracellular
synchronicity is achieved by biochemical
reactions occurring among thousands of Kai
molecules per cell (40) that enable a posttrans-
lational oscillator (PTO) of high precision and
synchrony (23, 33, 63).

MODELING THE
IN VITRO OSCILLATOR

Since the publication of the in vitro KaiABC
rhythm (68), there have been many attempts to
model this oscillator (7, 9, 14, 23, 37, 45, 47, 48,
54, 58, 63, 66, 82, 85, 91, 99, 102, 110, 113) and
probably others of which we are unaware. As a
representative example, we proposed in 2007 a
model that stochastically simulates the kinetics
of KaiC hexamers and the degree of phospho-
rylation of each monomer in every hexamer
(Figure 3a) (63). Beginning with a hypophos-
phorylated state of KaiC (state α), rapid and
repeated association and disassociation of KaiA
facilitate phosphorylation until the KaiC hex-
amer becomes hyperphosphorylated (state β)
(27). Association of KaiB with KaiC then brings
about a conformational change to a new state
(KaiC∗, state χ). Eventually, the KaiC∗ hexamer
(state χ) undergoes dephosphorylation, reaches
a relatively hypophosphorylated status (state
δ), and relaxes to the original conformation
(state α). Over the duration of the phosphory-
lation cycle of a hexamer, monomer exchange
between any two hexamers in any of the states
can occur. The rate of this subunit exchange
reaches a maximum during the KaiC dephos-
phorylation phase, when KaiB is associated with
KaiC (23). KaiB binds to the KaiC hexamer
when the total degree of phosphorylation of the
KaiC hexamer exceeds a threshold that places
it in state β. Although we originally envisioned
KaiA stochastically binding and unbinding

rapidly from KaiC hexamers, we now know
that when KaiB binds to hyperphosphorylated
KaiC, KaiA is sequestrated to a novel site to
form a stable KaiA·KaiB·KaiC complex (81).
The model depicted in Figure 3a incorporates
phase-dependent KaiC monomer exchange as
a mechanism for keeping the phosphorylation
state of hexamers synchronized in the popula-
tion, and accurately predicts observed patterns
of in vitro KaiC phosphorylation (63).

It is beyond the scope of this review to
describe all the proposed models for the
cyanobacterial clockwork (see Reference 7
for an evaluation of many of these models).
However, one significant aspect in which
the models differ is the mechanism of KaiC
hexamer synchronization. In this respect, the
various models fall mostly into two groups:
synchronization by KaiA sequestration (6, 9,
85, 99) or synchronization by phase-dependent
monomer exchange (23, 37, 63, 113). [Inter-
estingly, monomer exchange was predicted by
a modeling study before it was experimentally
measured (14).] There is clear experimental
evidence for phase-dependent monomer ex-
change (23, 63); however, several studies have
also confirmed that KaiA is indeed sequestered
into a stable A·B·C complex (6, 81, 85). These
data suggest that KaiA sequestration may act in
concert with monomer exchange to accomplish
the synchrony of KaiC phosphorylation that
enables the robust high-amplitude rhythms for
many cycles in vitro (23). We have generated
a combined model in which monomer ex-
change is a mechanism for maintaining phase
synchrony among KaiC hexamers while KaiA
sequestration is involved in the switch from au-
tokinase to autophosphatase mode (81). Finally,
modeling studies are beginning to address how
the cyanobacterial pacemaker may regulate
gene expression (82), metabolism (19), and cell
division (110).

PTO AND TTFL: WHO IS
DRIVING WHOM?

It is generally assumed that the mechanism of
circadian clocks in eukaryotes is dependent on
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autoregulatory TTFLs (12, 17). Indeed, the
discovery of the KaiA, KaiB, and KaiC proteins
as key clock components in S. elongatus (22)
did not initially raise any doubts about the
importance of a TTFL at the core of this
prokaryotic clockwork. This interpretation
was based on the same kind of evidence that
currently supports the existence of TTFL
oscillators in eukaryotes, namely (a) rhythms of
abundance for mRNAs and proteins encoded
by clock genes, (b) feedback of clock proteins on
their gene’s transcription, and (c) phase setting
by experimental expression of clock proteins
(12, 22, 33). However, a number of more
recent observations seemed to be inconsistent
with a core TTFL oscillator in cyanobacteria.
For example, the circadian rhythm of KaiC
phosphorylation appeared unaffected by global
inhibition of transcription and translation
(94). Moreover, replacement of the promoters
driving kaiBC gene expression with nonspecific
heterologous promoters did not disturb the cir-
cadian rhythm (67, 107). When cyanobacterial
cells were treated with the protein synthesis in-
hibitor chloramphenicol for extended periods
of time, no phase changes were observed in the
circadian system after return to normal con-
ditions (35, 106). The discovery of the in vitro
KaiABC oscillator in 2005 proved that a TTFL
was not necessary for circadian oscillations
in cyanobacteria (68), and that this KaiABC
system was likely to act as a PTO in vivo.

The experimental observations that the
kaiABC gene cluster is essential for rhythms
in vivo and that rhythmic KaiC phosphoryla-
tion runs without a TTFL in vitro and in vivo
(35, 68, 94, 106) implied that the KaiABC PTO
was the self-sustained core pacemaker. There-
fore, transcription and translation were posited
to be involved only in output (68, 94). Sub-
sequently, Kitayama et al. (41) suggested that
oscillations in KaiC abundance based on tran-
scription and translation are also important for
generating the in vivo circadian rhythm. In par-
ticular, those authors reported that constitu-
tive hyperphosphorylation of KaiC (either by
overexpression of KaiA or by using a mutant
of KaiC that mimicked constitutive hyperphos-

phorylation) allowed rhythmicity to proceed in
vivo. Their interpretation was motivated by the
observation that cyanobacterial cells apparently
exhibited oscillations when the KaiABC oscilla-
tor was inactivated by stalling the phosphoryla-
tion status of KaiC. In other words, the KaiABC
oscillator (PTO) did not seem to be an oblig-
atory core oscillator in cyanobacteria because
transcription and translation oscillated even in
the absence of the KaiC phosphorylation cy-
cle and the oscillation persisted regardless of
the phosphorylation state and kinase activity of
KaiC (41). Another group modeled these results
and found that a hypothetical pacemaker com-
posed of tightly intertwined PTO and TTFL
cycles can generate robust circadian rhythms
over a broad range of growth conditions
(116).

We decided to extend the experiments by
Kitayama et al. and have recently arrived at
a different conclusion regarding the hierarchy
between the PTO and the TTFL. Our cur-
rent working model is that the PTO is the core
pacemaker and the TTFL is a damped slave
oscillator (82) (Figure 6). We base this inter-
pretation on our finding that the rhythms gen-
erated by cells expressing hyperphosphorylated
KaiC have a long period and are clearly damped.
Moreover, these damped rhythms are not com-
pensated for by changes in metabolic activ-
ity and therefore cannot be considered a bona
fide circadian phenomenon. Modeling studies
showed that the experimental data were com-
patible with a core PTO driving the TTFL
and that the combined PTO/TTFL system
is resilient to noise. Modeling also suggested
that de novo synthesis of clock proteins cou-
pled with KaiC monomer exchange results in
phase shifts or entrainment of the core PTO
pacemaker (Figure 6). Our new model of the
cyanobacterial oscillator explains how the core
pacemaker can be a PTO while receiving input
from a TTFL (82). This interpretation has ex-
citing implications for eukaryotic clock systems
and suggests that the existence of a common
mechanism at the heart of circadian oscillations
in all biological systems merits a re-evaluation
(32, 82, 83).
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KaiA

KaiB

KaiC

Phosphates on KaiC

KaiBKaiB•KaiCKaiCKaiB•KaiCSasA/RpaA

PTO

TTFL

Rhythmic DNA
topology

TorsioTorsion-
sensitivesensitive

transcriptiontranscription

Torsion-
sensitive

transcription

Global gene
expression

All promoters

A B C

Figure 6
The core posttranslational oscillator (PTO) is embedded in a larger transcription/translation feedback loop
(TTFL). The PTO is linked to the damped TTFL by transcription and translation of the kaiABC cluster.
Global gene expression is mediated by rhythmic modulation of the activity of all promoters, including those
driving the expression of the central clock gene cluster, kaiABC (ABC in figure). Rhythmic DNA torsion
and/or transcriptional factor activity (e.g., SasA/RpaA) modulates global promoter activities. Cyclic changes
in the phosphorylation status of KaiC regulate DNA topology/transcriptional factors. The PTO is
determined by KaiC phosphorylation as regulated by interactions with KaiA and KaiB (compare with
Figure 3a). Robustness is maintained by synchronization of KaiC hexameric status via monomer exchange
(depicted by dumbbell-shaped KaiC monomers exchanging with KaiC hexamers in the middle of the PTO
cycle). The shade of KaiC hexamers (dark versus light blue) denotes conformational changes that roughly
equate to kinase versus phosphatase forms. New synthesis of KaiC feeds into the KaiABC oscillator as
nonphosphorylated hexamers or as monomers that exchange into pre-existing hexamers. If the new synthesis
of KaiC occurs at a phase when hexamers are predominantly hypophosphorylated, the oscillation of KaiC
phosphorylation is reinforced (enhanced amplitude). If new synthesis of unphosphorylated KaiC happens at
a phase when hexamers are predominantly hyperphosphorylated, this leads to an overall decrease in the
KaiC phosphorylation status, thereby altering the phase of the KaiABC oscillator (phase shift), reducing its
amplitude, or both. Phase shifts accomplished by this mechanism could be partially or totally responsible for
entrainment in vivo (from Reference 82).

ENTRAINING THE
ENDOGENOUS CLOCK TO
ENVIRONMENTAL TIME

One of the three salient properties of circadian
rhythms is their ability to be entrained by the
daily cycle in the environment so that their en-
dogenous ∼24-h period takes on a period of
exactly 24 h with the appropriate phase rela-

tionship (12). By virtue of its day-to-day con-
sistency, the LD cycle is the most important
environmental signal for circadian entrainment
in most organisms. In cyanobacteria, mutagen-
esis screens designed to find factors involved
in phase resetting elicited by pulses of dark-
ness were successful in identifying CikA, a his-
tidine kinase and pseudobacteriophytochrome
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(86). Because of its similarity to bacteriophy-
tochromes, CikA initially seemed to be a light-
absorbing photoreceptor. However, unlike a
classical photoreceptor, CikA does not absorb
light, but rather it appears to sense the redox
state of the intracellular plastoquinone pool (25,
26). Light drives large changes in redox poten-
tial via photosynthesis, and this could be an en-
training cue for the cyanobacterial clock (52).
Quinone not only directly binds to CikA, it
also affects the stability of CikA (26). More re-
cently, redox effects were further implicated in
clock entrainment by the observation that KaiA
can bind quinone and this binding destabilizes
the KaiA protein, thereby reducing its ability
to stimulate KaiC autophosphorylation (105).
These data suggest that KaiA senses environ-
mental signals as changes in redox state and
modulates the circadian clock. Other proteins
implicated in light resetting of the cyanobac-
terial clock include Pex and LdpA, in addition
to four new proteins that interact with CikA
(NhtA, PrkE, IrcA, and CdpA) (25, 51, 89).
These proteins may contribute to the input
pathway (51).

However, a new paper has proposed a dra-
matically different explanation for LD entrain-
ment that is based on the observation that the
ratio of ATP to ADP declines in the dark in
S. elongatus cells, which are obligately photo-
synthetic (84). When ATP:ADP ratio changes
that are similar to the in vivo measurements in
darkness were simulated in the in vitro oscilla-
tor, they caused phase shifts similar to those ob-
served with dark pulses in vivo. These data were
interpreted to mean that exposure of cells to
darkness changes the ATP/ADP ratio, and this
change directly resets the phase of the PTO in
vivo. A mathematical model based on these data
effectively modeled entrainment by dark pulses
(84). Although this new study has the poten-
tial to explain entrainment of the cyanobacterial
circadian clock, it is presently unclear how this
interpretation will fit together with the other
data implicating CikA (and other proteins) in
the entrainment pathway.

Although LD cycles are usually the most
important entraining agent, cyclic exposure to

temperature changes can often entrain circa-
dian clocks (30). There has not yet been a re-
port of temperature cycle entrainment for the
cyanobacterial system in vivo (except for a brief
mention in Reference 114), but there have been
two reports of temperature resetting of the in
vitro oscillator (63, 114). In 2007, we reported
the first phase response curves for the in vitro
system, generated by 6-h pulses of either 16◦C
or 37◦C away from the free-running tempera-
ture of 30◦C (63). This analysis demonstrated
that the in vitro oscillation shares character-
istic phase-dependent responses to perturba-
tion with most circadian systems (12, 30). A
more extensive analysis of temperature-induced
phase resetting that used steps between 30◦C
and 45◦C also found that the temperature stim-
uli shifted the phase of the in vitro rhythm in a
phase-dependent manner suggestive of a non-
parametric entrainment mechanism (12, 114).

Nakajima et al. (69) have suggested that daily
changes in the intracellular concentrations of
KaiB and KaiC could modulate the angular ve-
locity of the pacemaker in vivo and provide an
entraining stimulus. KaiB and KaiC abundance
levels oscillate in LL, whereas KaiA levels re-
main rather constant (27, 40, 94, 106). Although
some studies have reported that the abundance
of Kai proteins is cyclic in LD cycles as well (36),
we find considerable variability of Kai cycling
in LD; in some experiments, Kai protein lev-
els seem not to oscillate in LD when the KaiC
phosphorylation rhythm is robust (82). There-
fore, the hypothesis that entrainment in vivo
is based on changes of Kai protein abundances
warrants more experimental testing (69). Our
studies of the relationship between the PTO
and TTFL have led us to propose that new
synthesis of Kai proteins in the daytime al-
ters and adjusts KaiC phospho-status as needed
for proper entrainment to the environment
(Figure 6) (82).

EVOLUTION OF
CIRCADIAN TIMING

Cyanobacteria are an ancient group. They were
likely one of the earliest life forms, dating back
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at least 3.5 billion years. Therefore, over the
span of their evolution they have been sub-
jected to the original earth’s anoxic atmosphere,
which was also characterized by high levels of
ultraviolet (UV) radiation. Indeed, cyanobac-
teria are thought to be the primary organism
that transformed earth’s atmosphere by photo-
synthetic oxygen emission into its current oxy-
genated state with the concomitant creation of
the ozone layer, which helps to shield earth’s in-
habitants from the deleterious effects of UV ra-
diation. Currently, the most plausible model for
the evolution of circadian timing—the escape
from light hypothesis (32, 70, 79, 80)—strongly
implicates daily gating of cell division and DNA
damage as the selective forces that resulted in
the evolution of circadian pacemakers. In a nut-
shell, the escape from light hypothesis proposes
that the illuminated portion of the light/dark
cycle had profound and mostly deleterious ef-
fects on early life; therefore, a strong initial driv-
ing force for the early evolution of a circadian
timer could have been the advantage of phasing
to the nighttime those cellular processes that
are vulnerable to light. For example, UV light
produces thymidine dimers in DNA, which
if not repaired accurately mutate the DNA.
Moreover, even visible light can modulate
metabolism and other processes because it is ab-
sorbed by omnipresent pigments in cells such
as cytochromes. Consequently, cellular events
that are hypersensitive to light (such as DNA
damage and electron transport) would be best
performed at night in organisms that cannot
shield themselves from irradiation. The escape
from light hypothesis predicts that the vestiges
of nocturnal programming of light-sensitive
processes might have been retained in present-
day organisms. This prediction was tested in the
eukaryotic unicell Chlamydomonas, where it was
found that the cells were indeed most sensitive
to UV light in the early night (70).

FUTURE DIRECTIONS FOR
CYANOBACTERIAL CLOCKS

As Jacques Monod said in his Nobel Prize ac-
ceptance speech in 1965, “The ambition of

molecular biology is to interpret the essential
properties of organisms in terms of molecu-
lar structures. This objective has already been
achieved for DNA, and it is in sight for RNA,
but it still seems very remote for the proteins.”
Although we may be on the verge of realiz-
ing Monod’s ambition with the KaiABC sys-
tem, many outstanding and unresolved issues
remain:

� A perplexing concern about the in vitro
oscillator when seen in the context of its
in vivo operation relates to the stoichiom-
etry among the KaiA, KaiB, and KaiC
proteins for optimal operation. The orig-
inal publication (68) used concentrations
of the Kai proteins that were supposedly
based on estimates of in vivo concentra-
tions (40), but in fact significantly more
KaiA is needed in the in vitro reaction
than appears to be present in vivo. In ad-
dition, while early reports suggested that
the period and amplitude of the in vitro
rhythm were relatively invariant within
an allowed range of Kai protein con-
centrations (37), recent data indicate sig-
nificant effects on the period of the in
vitro oscillator when the ratio of [KaiA]
was varied relative to the concentration
of [KaiB]+[KaiC] (69). Modeling indi-
cates that the PTO is robust and resilient
within a limited scope of Kai protein con-
centration fluctuations (82), but these re-
cent results (69) raise the concern that the
in vitro oscillator might not be a reliable
pacemaker in vivo. Perhaps a function of
the TTFL is to maintain Kai protein con-
centrations within a range that maintains
a dependable timekeeper.

� What is the configuration of KaiC
in the unphosphorylated state? At the
present time, no three-dimensional struc-
ture of unphosphorylated KaiC has been
reported.

� We have crystal structures of the three
Kai proteins individually, but not of all
three Kai proteins in a complex or inter-
acting with SasA, CikA, etc. Moreover,
methods of structural analysis that allow
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dynamic measurements of structure (i.e.,
SAXS, NMR, and EM) should be pur-
sued further because crystal structures are
snapshots of proteins whose structures
are almost certainly dynamic, and these
dynamic changes will be important for
fully understanding the mechanism of the
KaiABC oscillator.

� Despite progress, a complete mechanis-
tic understanding of phosphorylation
(autokinase), dephosphorylation (au-
tophosphatase), and ATPase activity
remains obscure.

� Is the KaiC hexamer a propeller? Do
all the monomers in the KaiC hexamer
act in concert, or is there spatial distri-
bution of activities? Considering that
KaiC and F1-ATPase share structural
similarities, perhaps there is a rotary
phosphorylation/activity within KaiC as
in F1-ATPase (96, 101).

� How are the phosphorylation and
dephosphorylation rates of KaiC com-
pensated for temperature (68, 94)? The
mechanism of temperature compen-
sation, which is a key property of all
circadian systems, remains a key mystery.

� How are the Kai proteins coupled to the
downstream control of gene expression?
One study has proposed that the ATP hy-
drolytic activity of KaiC is the key output
of the KaiABC oscillator (11). Alterna-
tively, an output pathway for KaiC that is
based on two-component signaling was
proposed whereby KaiC influences the
phosphorylation status of the histidine

kinase SasA, which in turn regulates the
activity of a response regulator, RpaA,
that may act as a transcriptional factor
(90). Other factors have also become
implicated in this output pathway (92).
The sequence and structural similarity of
KaiC to RecA and DnaB has suggested
another possibility, namely that the
Kai nanomachine may have a helicase
activity (46, 62). This possibility—which
does not exclude the participation of
a SasA/RpaA or ATPase pathway—is
particularly intriguing given the global
rhythms of chromosomal topology (60,
100, 104). If KaiC can act on DNA,
perhaps it directly mediates the perva-
sive supercoiling. However, although we
found that KaiC has weak binding affinity
for forked DNA substrates (62), hitherto
attempts to measure helicase activity
from KaiC have been unsuccessful.

� Is an oscillating chromosomal topology
the basis for rhythmic global gene expres-
sion (60, 100, 104)? Systems biology ap-
proaches may yield answers.

� What is the mechanism for the com-
petition/selection phenomena that illus-
trate the adaptive significance of the S.
elongatus clock in rhythmic environments
(19, 31, 73, 103)?

� Will the clockwork in S. elongatus ulti-
mately prove to be completely distinct
from the clocks of eukaryotes? Or will
the insights gleaned from cyanobacteria
induce a reassessment of clocks in higher
organisms (32, 33, 82, 83)?

SUMMARY POINTS

1. Biological clocks have played an important role in bioevolution as evidenced by their
existence in organisms that initially evolved as far back as 3.5 billion years ago.

2. Prokaryotic cyanobacteria have a circadian timekeeping system that enhances fitness.

3. These cells exhibit pervasive circadian regulation of gene expression, possibly by regu-
lation of chromosomal topology.
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4. A circadian rhythm of the phosphorylation of the central clock protein KaiC can be
reconstituted in vitro with three proteins derived from the cyanobacterium S. elongatus
(KaiA, KaiB, and KaiC) and ATP.

5. KaiA, KaiB, and KaiC are the only circadian proteins for which the three-dimensional
structure of full-length proteins is known.

6. Structural, biochemical, and biophysical methods have been used to study the mechanism
by which KaiC is rhythmically phosphorylated and dephosphorylated. Dephosphoryla-
tion is temporally coordinated with monomer exchange, which may also function to
maintain synchrony of individual Kai molecules in the population of molecules.

7. Modeling has been applied to the in vitro and in vivo systems. Models of the complete
in vivo system have indicated the existence of a core biochemical oscillator that controls
a larger transcription/translation feedback loop.

8. The kaiC gene is widespread among prokaryotes (Eubacteria and Archaea), but it may be
performing a nonclock function in prokaryotic species outside of the cyanobacteria. The
elucidation of this nonclock function could lead to fascinating clues about the selective
pressure(s) that led to the evolution of circadian clocks.
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