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Abstract

Background: The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by three
proteins, KaiA, KaiB and KaiC. Homo-hexameric KaiC displays kinase, phosphatase and ATPase activities; KaiA enhances KaiC
phosphorylation and KaiB antagonizes KaiA. Phosphorylation and dephosphorylation of the two known sites in the C-
terminal half of KaiC subunits, T432 and S431, follow a strict order (TSRpTSRpTpSRTpSRTS) over the daily cycle, the
origin of which is not understood. To address this void and to analyze the roles of KaiC active site residues, in particular
T426, we determined structures of single and double P-site mutants of S. elongatus KaiC.

Methodology and Principal Findings: The conformations of the loop region harboring P-site residues T432 and S431 in the
crystal structures of six KaiC mutant proteins exhibit subtle differences that result in various distances between Thr (or Ala/
Asn/Glu) and Ser (or Ala/Asp) residues and the ATP c-phosphate. T432 is phosphorylated first because it lies consistently
closer to Pc. The structures of the S431A and T432E/S431A mutants reveal phosphorylation at T426. The environments of
the latter residue in the structures and functional data for T426 mutants in vitro and in vivo imply a role in
dephosphorylation.

Conclusions and Significance: We provide evidence for a third phosphorylation site in KaiC at T426. T426 and S431 are
closely spaced and a KaiC subunit cannot carry phosphates at both sites simultaneously. Fewer subunits are phosphorylated
at T426 in the two KaiC mutants compared to phosphorylated T432 and/or S431 residues in the structures of wt and other
mutant KaiCs, suggesting that T426 phosphorylation may be labile. The structures combined with functional data for a host
of KaiC mutant proteins help rationalize why S431 trails T432 in the loss of its phosphate and shed light on the mechanisms
of the KaiC kinase, ATPase and phosphatase activities.
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Introduction

In the cyanobacterium Synechococcus elongatus the KaiC, KaiA

and KaiB proteins form a minimal circadian clock in vivo that is

able to sustain a ca. 24-hour period in the absence of a

transcription-translation oscillatory feedback loop [1]. Remark-

ably, the clock can be reconstituted in vitro with just the three Kai

proteins and ATP [2]. The in vitro timer displays the hallmarks of

all circadian oscillators, namely a period of approximately

24 hours, tuned to the daily light-dark cycle, and temperature

compensation [3]. The discovery of this in vitro oscillator paves the

road to a rigorous biochemical, biophysical and structural

characterization of a molecular clock [4].

KaiC comprises the core of the clock and acts as a kinase,

phosphatase and ATPase [5–8]. KaiA enhances KaiC phosphor-

ylation and in its absence in vitro, KaiC dephosphorylates over

time, and KaiB antagonizes KaiA action [6,7,9–11]. Three-

dimensional structures of the full-length cyanobacterial KaiA,

KaiB and KaiC proteins have been reported during the past five

years (reviewed in refs. [12] and [13]). KaiC is the result of a gene

duplication [14] and forms a homo-hexamer of ca. 360 kDa

molecular weight [15,16]. The kaiC gene displays similarities to the

recA and dnaB families [14], but a helicase activity for KaiC has not

been established despite intense efforts [17]. The crystal structure

of KaiC from S. elongatus revealed a hexamer in the shape of a

double doughnut with approximate dimensions 1006100 Å,

whereby the N-terminal CI and C-terminal CII halves of subunits

are joined by a 15-amino acid linker [18]. A total of twelve ATP

molecules are bound between subunits in the upper and lower

rings and C-terminal peptide tails that protrude from the dome-

shaped surface of the CII hexamer give the KaiC double-

doughnut an asymmetric appearance [19]. Both the KaiA and
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KaiB dimers contact only the KaiCII half and hybrid structural

techniques have recently yielded 3-dimensional models of the

KaiAC [19] and KaiBC complexes [20] and provided insights into

the modes of action of the KaiA and KaiB proteins.

Two phosphorylation sites (P-sites), T432 and S431 that are

both located in the CII half were identified in KaiC [21,22]. Over

a 24-hour cycle phosphorylation proceeds in a strict order

TSRpTSRpTpSRTpSRTS [23,24]. Rapid and repeated asso-

ciation of KaiA with KaiC results in the conversion from the hypo-

phosphorylated (TS) to the hyper-phosphorylated (pTpS) form

[25,26]. KaiB binds preferably to the hyper-phosphorylated form

and reverses KaiA’s action, whereby first T432 and then S431 are

being dephosphorylated [23–26]. KaiB binding and dephosphor-

ylation are accompanied by the exchange of KaiC subunits [25], a

mechanism that is crucial to maintaining a stable oscillator

[26,27]. Rather than individual KaiC particles engaging in various

protein-protein associations and moving essentially in lockstep

from the hypo- to the hyper- and back to the hypo-phosphorylated

form, the cyanobacterial minimal timer is characterized by a

mixture of oscillating populations of free KaiC, KaiA and KaiB

proteins and KaiAC and KaiBC as well as KaiABC complexes of

different concentrations [25,26].

Recent reports on KaiC and the mechanism of the KaiABC

circadian clock take into account only two P-sites. However, we also

found the T426A mutant ( = a426/S431/T432 = KaiaST = aST) to

be arhythmic [21]. In the crystal structure S431 and T426 are very

tightly spaced and the side chain of T426 engages in a H-bond

interaction with S431 when the latter is phosphorylated [21]

(Fig. 1). We established that mutations of T426 alter the KaiC

phosphorylation profiles in vivo and that residue 426 needs to be

phosphorylatable and not simply capable of forming a H-bond to

pS431 [28]. Moreover, like the KaiCaST mutant, nST as well as eST

abolish rhythmicity in strains expressing these mutants alone.

Interestingly, when T426-mutant KaiCs are co-expressed with the

wt enzyme, aST exhibits a dominant negative effect, whereas strains

co-expressing either nST or eST with wt-KaiC show significantly

longer periods of around 30 hours.

To analyze the phosphorylation patterns of KaiC P-site mutants

and to visualize potential conformational variations in the vicinity

of bound ATP and residues 432 and 431 at hexamer subunit

interfaces, we determined crystal structures of the S. elongatus KaiC

single mutants T432A (TSa), S431A (TaT), S431D (TdT), and

T426N (nST) and the double mutants T426A/T432A (aSa) and

S431A/T432E (Tae). The combined structural data expose subtle

changes in the orientations of the H423-I433 loop region

harboring phosphorylated residues relative to the c-phosphate of

ATP compared with the structure of wt-KaiC. The structures of

the Tae and TaT mutants reveal that T426 residues in some of the

six subunits carry a phosphate group and call into question the

common assumption of just two P-sites in the core clock protein.

Beyond the discovery of a third P-site in KaiC, the structures of

mutants also provide insight into the mechanisms of the kinase,

phosphatase and ATPase activities and the role of individual

residues, including T426 in the catalytic processes.

Results

Crystal Structures of S. elongatus KaiC Single- and
Double-Mutant Proteins

We determined crystal structures of the full-lengths TSa, TaT,

TdT, nST, aSa and Tae KaiC mutant proteins at resolutions of

between 2.9 and 3.3 Å (Table 1). All mutant proteins were

expressed with a C-terminal His6 tail that was not removed for

crystallization. The structures are homologous to that of wt-KaiC

Figure 1. Inter- and intra-subunit interactions of phosphory-
lated Thr and Ser residues in KaiC. (A) Formation of a salt bridge
between pT432 (A subunit) and R385 (F subunit; carbon atoms
highlighted in green). Hydrogen bonds are dashed lines. (B) Interac-
tions of pS431 (A subunit) with T426, H429 and D417 (F subunit, carbon
atoms highlighted in green). (C) Configuration of T426 and S431 in the
C subunit that lacks phosphorylation at S431. The side chain hydroxyls
are too far removed to engage in a hydrogen bond.
doi:10.1371/journal.pone.0007529.g001
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and diffraction data were phased using the molecular replacement

technique and the KaiC structure with PDB ID code 3DVL

[4,19]. Following rigid-body, simulated annealing and individual

atom and B-factor refinement cycles, Fourier sum (2Fo–Fc) and

difference (Fo–Fc) electron density maps were computed and

inspected for .3s peaks around Ser and Thr side chains. Even at

the resolutions of the structures reported here, visualization of

phosphorylation sites is typically straightforward. Examples of the

omit electron density around T426 in the structure of the Tae

double mutant following partial refinement and the quality of the

final electron density are depicted in Fig. 2.

Phosphorylation States of the Wild Type and Mutant KaiC
Proteins

An important consequence of the phosphorylation at T432 and

S431 in the KaiCII half is the formation of additional interactions

between residues at the subunit interface [21] that we have

suggested to have the effect of unidirectional phosphorylation

reactions driving the oscillator forward [4]. In the structure of wt-

KaiC, the T432 residues in all six subunits are phosphorylated and

form a salt bridge with R385 from adjacent subunits (Fig. 1A,

Table 2). In the four subunits that exhibit phosphorylation at

S431, the phosphates are within hydrogen bonding distance from

H429 from the same subunits, and His itself engages in a stacking

interaction with D417 from the adjacent subunit (Fig. 1B).

Phosphorylation is therefore expected to stabilize the subunit

interface relative to the hypo-phosphorylated form, whereby the

pT432…R385 interaction supposedly makes the chief contribu-

tion because it stitches together two charged residues across the

interface. This view is supported by the long-period phenotype of

the R385A mutant (.40 hours, Fig. 3); KaiCTSa itself is

arhythmic [21]. By comparison, the pS431…H429 interaction is

intra-subunit but may influence the inter-subunit H429…D417

interaction, i.e. via a change in the protonation state of histidine.

However, the period of the H429A mutant is increased only

modestly (28 hours) and the D417A mutant displayed a normal

period (Fig. 3); the KaiCTaT mutant is arhythmic as established

earlier [21]. More importantly, phosphorylation of S431 leads to a

new interaction with T426 (Fig. 1B), whereas in the unpho-

sphorylated state (subunits C and D, Fig. 1C), S431 and T426 are

spaced somewhat too far apart to allow formation of a hydrogen

bond. Interestingly, like the TSa and TaT mutants KaiCaST is

arhythmic [21].

The number and distribution of phosphorylation sites in the

individual KaiC mutants are summarized in Table 2. This table

also lists the distances in the wt-KaiC and mutant structures

between the c-phosphorus of ATP and either the Ca positions or

selected side chain atoms [i.e. P (pThr, pSer), Oc (Thr), Cb (Ala),

Cc (Asp, Asn), or Cd (Glu)] of residues 432, 431 and 426. If not

mentioned otherwise the distances given in the text refer to side

chain atoms of these three residues. The TSa and the TaT mutants

carry six phosphates on S431 and T432, respectively. Thus,

although T432 is the primary phosphorylation site, its mutation to

Ala does not prevent a phosphate from being transferred to S431.

This observation supports the notion that in wt-KaiC, T432 and

S431 get sequentially phosphorylated via the same mechanism.

When T432 is not available (Ala mutant), the ATP c-phosphate is

directly transferred to S431. An alternative kinase mechanism that

could readily explain the order of phosphorylation (T432 first and

S431 second) would entail an initial transfer of the phosphate to

T432 that then hands it off to S431 before being phosphorylated

itself a second time. However, this is not the case in KaiC and T432

likely receives the phosphate first because it is closer to the c-

phosphate than S431 (8.2 Å vs. 9.4 Å on average in wt-KaiC). This

Table 1. Selected crystal dataa and refinement parameters for structures of S. elongatus KaiC mutant proteinsb.

Mutant structure TSa TaT TdT nST aSa Tae

Space group P212121 P212121 P212121 P212121 P212121 P212121

Unit cell a [Å] 132.30 133.23 132.50 133.66 132.93 132.28

b [Å] 135.11 134.96 135.83 135.51 135.42 135.03

c [Å] 204.50 204.88 204.32 204.53 204.62 204.47

Resolution [Å] 2.9 3.2 3.2 3.2 3.0 3.3

Completeness [%] 93.8 93.4 91.5 92.9 99.9 98.3

Outer shell [%] 84.2 57.2 86.6 81.2 99.9 88.7

Resol. range [Å] 3.0–2.9 3.3–3.2 3.3–3.2 3.3–3.2 3.1–3.0 3.4–3.3

I/s(I) (outer shell) 17.8(2.8) 10.7(1.0) 16.8(4.4) 14.7(2.8) 23.4(2.7) 13.8(2.3)

R-merge [%] 7.2 8.5 9.0 7.0 6.1 10.3

Outer shell [%] 56.4 55.5 52.0 48.7 42.7 57.4

R-work [%] 22.8 24.2 23.3 23.7 22.9 23.1

R-free [%] 28.2 30.7 29.6 31.0 28.8 26.9

Reflections used for R-free [%] 8.4 5.4 8.3 7.2 8.9 8.3

Number of ATP molecules 12 12 12 12 12 12

No. of atoms 23,356 23,919 23,856 23,899 23,930 23,916

R.m.s.d bonds [Å] 0.009 0.01 0.009 0.009 0.008 0.009

R.m.s.d angles [u] 1.4 1.5 1.5 1.5 1.5 1.4

aAll data were collected on either the 21-ID-F or 21-ID-G beamlines at the Advanced Photon Source (Argonne National Laboratory, Argonne, IL), using MAR225 or
MAR300 CCDs. The data collection temperature was 110K.

bKaiC mutations xyz or mutants KaiCxyz are sequentially shown in order of sites x = 426, y = 431, and z = 432 where the wild-type residue is in upper case and mutated
residues are shown in lower case, i.e. Tsa or KaiCTSa, where the residue at position 426 is T, the residue at position 431 is S, and the residue at position 432 is mutated to A.

doi:10.1371/journal.pone.0007529.t001
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conclusion is also in line with the observation that S431 carries a

phosphate in the TSe mutant [23].

Interestingly, in the structure of KaiCTSa, A432 has moved

closer to the c-phosphate group of ATP: average distance 5.6 Å vs.

8.2 Å (wt-KaiC). One may have expected the above KaiCTSa

mutant to represent the state before dephosphorylation of the

second P-site (pS431). Instead its structure is more representative

of the initial phosphorylation event. By comparison, in the

structure of KaiCTaT, the average distances between the c-

phosphate and the pT432 and A431 residues (side chains,

Table 2) appear quite similar at first sight. This would not be

unexpected: once T432 residues have become phosphorylated,

S431 residues (A431 in the mutant) will shift into the active site to

receive their phosphate. However, A431 residues in the structure

of KaiCTaT remain farther removed from the c-phosphate of ATP

(7.7 Å on average; Ca…Pc) than A432 residues in the structure of

KaiCTSa (5.3 Å on average).

The structures of the TdT, nST and aSa mutants provide

further support for the conclusion that T432 is the principal

phosphorylation site because it lies closest to the c-phosphate. In

all three structures, residue 432 is distinctly closer to the c-

phosphate than 431, namely between 0.8 and 2.4 Å on average

(Table 2). The difference in distance is smallest in the case of

KaiCTdT; this mutant was studied as a model for the second step of

dephosphorylation, with T432 residues having lost their phos-

phates and pS431 residues about to give up theirs. Indeed, of all

structures in which T432 could potentially be phosphorylated,

KaiCTdT is the one that shows the lowest phosphorylation level of

T432 (phosphorylated in three subunits). Nevertheless the

phosphorylation levels and average distances to the ATP c-

phosphate of KaiCII 432 and 431 residues corroborate the idea

that the former is the principal phosphorylation site mainly

because of its proximity to ATP. In fact the spacing is particularly

tight in the structures of the TSa and aSa mutants. There the

average Cb…Pc distances (5.6 Å and 5.5 Å, respectively) exceed

by less than 1 Å the sum of the van der Waals radii of the methyl

and phosphate groups (4.8 Å).

From the distance data in Table 2 it is clear that different

phosphorylation states do not correlate with drastic conforma-

tional changes in the P-site loop region. In particular, the

conformations of the loop with both T432 and S431 phosphor-

ylated and with just T432 carrying a phosphate are quite similar.

This is illustrated by a superimposition of the loop regions from the

six subunits in the structure of wt-KaiC (Fig. 4A). Although we do

not have a structure of the non-phosphorylated form of KaiC at

this time (or of the KaiCTaa, KaiCaaa, and KaiCaST mutants), we

do not expect the conformations of the hypo- and hyper-

phosphorylated forms to be drastically different. In fact a

superimposition of subunits from the six KaiC mutant structures

reveals only minor adjustments in the geometry of the P-site loop

region (i.e. in the spacing of the S431 and T426 residues, Fig. 4B).

Thus, the combined structural data argue against a mechanism

underlying the rhythmic transformation from the hypo- to the

hyper- and back to the hypo-phosphorylated form that would

Figure 2. Example of the quality of the electron density. Final Fourier
sum (2Fo–Fc) electron density (1s, green) in the region of the P-site loop
(residues pT426 to E432) in A, the subunit A, and B, in the B subunit, in the
structure of KaiCTae. Annealed omit (2Fo–Fc) electron density around residue
T426 is depicted in magenta (4.5s threshold) and orange (3s threshold).
doi:10.1371/journal.pone.0007529.g002

Table 2. Phosphorylation patterns in crystal structures of S. elongatus KaiC mutant proteins and distances between phosphorylation
sites and ATP.

KaiC protein No. of phosphates in CII half Avg. distance in Å to Pc (ATP)a

P-site 432 431 426 432 431 426

Wild Type 6 4 – 8.2 (5.6) 9.4 (7.8) 12.5 (13.5)

TSa – 6 – 5.6 (5.3) 9.1 (7.8) 11.9 (13.5)

TaT 6 – 1 8.2 (5.5) 7.6 (7.7) 12.3 (13.6)

TdT 3 – – 8.3 (5.8) 9.1 (8.2) 12.5 (13.7)

nST 6 3 – 7.9 (5.4) 8.8 (7.7) 11.9 (13.9)

aSa – 6 – 5.5 (5.5) 7.9 (7.8) 12.8 (13.5)

Tae – – 4 7.6 (5.6) 7.4 (7.6) 11.9 (13.4)

aDistances between Pc (ATP) and P (pThr, pSer)/Oc (Thr)/Cb (Ala)/Cc (Asp, Asn)/Cd (Glu); distances between Ca and Pc are listed in parentheses.
doi:10.1371/journal.pone.0007529.t002
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require large conformational adjustments in the region harboring

the phosphorylation sites.

The Structures of the KaiC TaT and Tae Mutants Reveal a
Third Phosphorylation Site

The crystal structures of the KaiCTaT and KaiCTae mutants are

noteworthy in two respects. For one, the spacing between 431

residues (Oc) and the c-phosphate is tighter than that between 432

residues and Pc (Table 2). In addition, inspection of the electron

density reveals that four of six T426 residues carry a phosphate

group in the crystal of KaiCTae (absent in subunits C and D;

Fig. 5A). In the KaiCTaT structure, T426 from subunit A also

carries a phosphate group. These structures demonstrate for the

first time that T426 can become phosphorylated, although it is

farther removed from ATP than either the 432 or 431 residues

(Table 2; however, the average distance of 11.9 Å between

pT426 and the c-phosphate is not dramatically different from the

9.4 Å distance for pS431 residues in the structure of wt-KaiC).

Because the double mutant KaiCTae can be considered a model

system for the second phosphorylation step, we are assuming that

the inability of transferring the phosphate to A431 triggers

phosphorylation of T426. Although the side chain of A431

(methyl) is shorter than the hydroxymethylene moiety in wt-KaiC

the structural data leave no doubt that S431 and T426 cannot

both be phosphorylated. The loop harboring the two residues is

too tight at that location and attaching a phosphate group to both

S431 and T426 would lead to a clash (Fig. 5B). The earlier

finding that the aST mutant is arhythmic [21] and the in vivo data

presented in the accompanying paper [28] that reveal that the

nST mutant, although capable of forming a hydrogen bond to

pS431 (Fig. 5C), does not restore wt function dovetail with our

structural data. Instead of S431 and T426 residues being

phosphorylated simultaneously, a much more likely scenario

Figure 3. Mutations in the inter- and intra-subunit neighborhood of the P-sites affect in vivo rhythmicity and KaiC phosphorylation.
Bioluminescence profiles of PkaiBC::luxAB reporter strains carrying (A) wild-type KaiC or amino acid substitutions at (B) E318A, (C) E318D, (D) R385A,
(E) D417A, (F) H429A, or (G) I430A in KaiC. The mutations either at E318A, E318D or I430A abolished the circadian rhythmicity, whereas the mutants
R385A, D417A, or H429A exhibited promoter activity rhythms. The circadian periods of these bioluminescence rhythms were 36,48 h (R385A), 25.6 h
(D417A), 28.0 h (H429A) and 24.8 h (WT; Wild-Type), respectively. The cells expressing the wild-type or mutant KaiCs were harvested at ZT4 and
extracts were analyzed by immunoblot with anti-KaiC antibodies (right top). Therefore, these phosphorylation patterns are the in vivo patterns at ZT4.
doi:10.1371/journal.pone.0007529.g003
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may entail the phosphate shuttling between the two. Thus, the

phosphate is mainly bound to S431 but can occasionally jump to

T426, thus prolonging the lifetime of phosphorylation there

relative to T432. This idea is supported by the significantly longer

half-life of the TpS band during the KaiB-assisted dephosphor-

ylation and subunit-exchange phase in SDS-PAGE assays of the in

vitro oscillator [24). Moreover, the observation that KaiB is unable

to antagonize KaiA in the case of the aST and nST mutants [28]

supports a role of residue 426 in the dephosphorylation step.

Structure-Based Insights into the Kinase and ATPase
Mechanisms

Based on the structures of wt-KaiC and six mutants and in

conjunction with data from site-specific mutations (Fig. 3), the

divergent functions of the CI and CII halves in the control of the

KaiABC oscillator and the roles of individual residues underlying

the mechanisms of the kinase (CII half) and ATPase (CI and CII

halves) activities can be revisited. Comparisons between the

Figure 4. Conformational variations in the P-site loop region
(residues 425 to 432) in wt- and mutant-KaiCs. (A) Superimpo-
sition of the P-site loops from all six subunits in the structure of wt-KaiC.
A total of 505 atoms from subunit A were included to compare its
geometry to those of the other five subunits, using the Chimera
MatchMaker tool with the Smith-Waterman algorithm (BLOSUM-N
matrix). With respect to the A subunit the B, C, D, E, and F subunits had
r.m.s.d.’s of 0.25 Å, 0.29 Å, 0.30 Å, 0.31 Å, and 0.26 Å, respectively. (B)
Superimposition of selected P-site loops in subunits A from structures
of KaiC mutant proteins relative to wt-KaiC. The procedure was identical
to that used for generating the superimposition in panel A and the
r.m.s.d.’s are: TSa (484 atoms; 0.27 Å), TaT (506 atoms; 0.36 Å), TdT (506
atoms; 0.25 Å), nST (505 atoms; 0.51 Å), aSa (506 atoms; 0.14 Å) and Tae
(506 atoms; 0.36 Å).
doi:10.1371/journal.pone.0007529.g004

Figure 5. Phosphorylation of T426 in selected subunits of the
KaiCTae double mutant. (A) Conformation of the P-site loop region
encompassing residues I425 to E432 in the A subunit. Distances
between the c-phosphorus of ATP and the Cd (E432), Cb (A431) and
phosphorus (pT426) positions (marked by thin solid lines) are shown in
Å. (B) The hypothetical, simultaneous phosphorylation at S431 and
T426 would lead to a clash. The superimposition shows the P-site loops
in subunits A of the wt-KaiC and Tae mutant structures. (C) Hydrogen
bonding interaction (dashed lines) between N426 and pT431 in the
crystal structure of the KaiCnST mutant.
doi:10.1371/journal.pone.0007529.g005
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distinct configurations and identities of amino acids in the vicinity

of ATP phosphate groups in the CII and CI halves are depicted in

Fig. 6. Pairs of glutamates in the CI and CII halves (E77/78 and

E318/319, respectively) take on key roles in the conversion of ATP

to ADP (see Fig. S1, supporting information, for an alignment of

the CI and CII sequences). In CII, E318 is the catalytic glutamate

[5] that activates the T432 and S431 hydroxyl groups for

nucleophilic attack at the c-phosphate group. Both the E318A

and E318D mutants are arhythmic and the former lacks the ability

for phosphoryl transfer judging from SDS-PAGE gels (Fig. 3).

Three basic residues, K294(n), K457(n+1) and R459(n+1) stabilize

the negative charges on the phosphates and lock the ATP

molecule in place. E319 is involved in the coordination of one of

the two Mg2+ ions found at the active site (Mg2+ ion A, Fig. 6A).

Mg2+ ion A is bound between the c-phosphate and the Thr/Ser

residues that become phosphorylated and shepherds the nucleo-

phile toward the former. Mg2+ ion B is bound between the c- and

b-phosphates and acts as a Lewis acid to stabilize the

pentacovalent transition state and facilitate departure of the

oxyanion. Therefore, the kinase relies on the ubiquitous two-

metal-ion phosphoryl-transfer mechanism ([29] and cited refs.).

The coordination of metal cations involves a mixture of the inner-

and outer-sphere modes, but the resolutions of the diffraction data

(Table 1) are not sufficient to allow a reliable assignment of water

molecules coordinated to Mg2+ ions. In CI, E77 takes on the role

of deprotonating a water molecule and thus activating it for ATP

hydrolysis. As in the CII half, two lysines [K52 and K224(n+1)]

and an arginine [R226(n+1)] stabilize the orientation of the ATP

phosphates (Fig. 6B). Residue E78 is coordinated to Mg2+ ion B,

but a third glutamate (E183 not shown in Fig. 6B) is also situated

in close vicinity from the c-phosphate [Cd…cP<6.5 Å (E78)/

7.5 Å (E183)/8.5 Å (E77)]. Based on the structure alone and in the

absence of site-specific mutational data, it is unclear what the role

of E183 might be.

Figure 6. The kinase and ATPase mechanisms. Stereo diagrams depicting the active sites in the (A) KaiCII and (B) KaiCI halves of KaiCnST. Carbon
atoms of residues from adjacent subunits are colored in gray and green (subunits A and B, respectively), Mg2+ ions are depicted as blue spheres with
coordination geometries indicated by bold lines and hydrogen bonds are dashed lines.
doi:10.1371/journal.pone.0007529.g006
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In the CII half, R385, that forms an inter-subunit salt bridge to

T432 once the latter becomes phosphorylated (see above), also lies

in close vicinity of the general acid/base E318 (Fig. 6A).

Interestingly, the R385A mutant is hyper-phosphorylated, possibly

indicating that the lack of the R385…E318 interaction facilitates

activation of T432 and S431 by E318 and thus increases

phosphorylation (Fig. 3). Alternatively, since R385 interacts with

pT432 across the subunit interface, the R385A mutation could

somehow affect dephosphorylation. However, this latter hypoth-

esis is not supported by an in vitro dephosphorylation assay, as the

data do not indicate diminished phosphatase activity in the

KaiCR385A mutant relative to wt-KaiC (Fig. S2, supporting

information).

Although both the CI and CII halves exhibit ATPase activity,

phosphorylation across subunits suppresses the ATPase activity

[30]. This interpretation is consistent with the increased ATPase

activity of the Taa mutant relative to wt-KaiC; once dephosphor-

ylated the ATPase activity resumes. Unlike the CII half that

exhibits kinase, phosphatase and ATPase activities, the CI ring

cannot act as an auto-kinase or auto-phosphatase. A comparison

between the loop region harboring the T432, S431 and T426 sites

in CII and the equivalent region in CI provides a rationalization

for these differences. The residues in CI corresponding to the

T432, S431, and T426 sites in CII are E198, E197 and A192,

respectively (Fig. S1). Thus, the loop in CI mimics a hyper-

phosphorylated state, depriving a potential kinase activity of target

sites. Further it is remarkable that CI residue 192 that corresponds

to T426 in CII is an alanine. We believe that the presence of Ala

rather than Thr or Ser at this site is to rule out a phosphoryl

transfer in the CI half, thus limiting the roles of the N-terminal

KaiC ring to catalyze ATP hydrolysis and serve as a structural

platform.

Residues Flanking the T432, S431 and T426 P-Sites Form
Part of a Hydrophobic Core

In the CII half, the residues that flank the phosphorylation sites

(425, 430 and 433) are all isoleucines. The Ile side chains point

away from ATP (Fig. 7A) and participate in an extended network

of hydrophobic interactions that involve no fewer than twelve Ile,

Val and Phe residues (Fig. S1). To assess the effects of a mutation

of one of the above Ile residues on phosphorylation and clock

rhythm we generated the I430A mutant. This mutation renders

the clock arrhythmic and the SDS-PAGE analysis indicates that

KaiCI430A is hyper-phosphorylated (Fig. 3). The thermodynamic

stability of the I430A mutant is reduced relative to wt-KaiC; CD

melting experiments indicate that the Tm of the mutant is lowered

by about 3uC relative to wt-KaiC. In the CI half a similar

sequence pattern exists in that the residue adjacent to E198 is Phe

(F199), the one next to E197 is Val (V196) and the neighbor of

A192 is Ile (I191) (Figs. S1, 7B). However, the environment of the

loop region in CI is somewhat less hydrophobic compared with

CII as manifested by a more negative electrostatic surface

potential (Fig. 7). Based on the available observations the

mutation of I430 to Ala most likely triggers a change in the

mobility of the P-site loop that severely distorts the balance

between the hypo- and hyper-phosphorylated forms.

Discussion

Among the structures of the six KaiC mutant proteins reported

here, those of the TaT and Tae mutants are the most intriguing

because they imply that T426 can be a third phosphorylation site.

The observation of a phosphate at T426 in the crystals but not

under other conditions, i.e. SDS-PAGE assays using heated

KaiCTae samples [28] or mass spectrometric analyses of wt-KaiC

[22,24] may indicate that phosphorylation at this site is labile.

However, we believe that the conditions for growing KaiC crystals

promote increased phosphorylation levels relative to protein

isolated from in vitro cycling reactions or incubated with ATP at

Figure 7. A hydrophobic pocket anchors isoleucine residues
adjacent to P-sites in CII. (A) Residues flanking the T432, S431 and
T426 phosphorylation sites in CII (I433, I430 and I425, respectively; side
chains highlighted in green) point into a hydrophobic patch. (B)
Similarly, residues corresponding to CII P-sites in CI (E198, E197 and
A192) are flanked by hydrophobic residues (F199, V196 and I191,
respectively; side chains highlighted in green). However, judging from
the calculated electrostatic surface potential [39], the pocket in CI
appears to be slightly more polar compared with CII.
doi:10.1371/journal.pone.0007529.g007
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elevated temperatures. For example, as compared with the two

latter procedures, the crystallization conditions replace ATP with

ATPcS and involve a lower pH (,5). The kinase activity of KaiC

is enhanced under acidic conditions [6], resulting in transfer of

ATPcS thiophosphate groups to T432, S431 or T426. In this

context it is noteworthy that crystals of KaiC grown at neutral pH

and/or in the presence of ATP are inferior to those obtained at

low pH with ATPcS. Once thiophosphate groups have been

transferred to CII Thr and Ser residues they will likely stay bound

as thio-phosphorylated KaiC may be resistant to auto-dephos-

phorylation, similar to what has been reported for CaM kinase II

[31]. This will keep the KaiC hexamer in a stable state of elevated

phosphorylation that is presumably conducive to crystallization

instead of producing a mixture of KaiCs in various states of

phosphorylation when ATP is present. Therefore, phosphorylation

at T426 seen in selected subunits of the Tae and TaT mutants is

most likely not a crystallographic artifact. Rather the crystal

structures have preserved a third P-site in KaiCII that appears to

have evaded identification by other approaches.

The T426 phosphorylation site is not a substitute for S431 as

demonstrated by the arhythmic behavior of the TaT and aST

mutants [21]. Clearly, both sites have to be phosphorylatable as

the nST mutant that exhibits hydrogen bond formation between

the Asn side chain and the 431 phosphoserine (Fig. 5C) is also

arhythmic. However, the combined experimental evidence also

supports the conclusion that S431 is directly phosphorylated (not

T426) following phosphorylation at T432 (see Fig. 8 for a cartoon

of the phosphorylation and dephosphorylatrion events over a 24-

hour cycle). For example, in the structure of wt-KaiC, all subunits

display phosphorylation at T432 and four subunits feature a

phosphoserine at position 431 [4,18,21]. By comparison, only one

subunit is phosphorylated at T426 in the TaT mutant (this work).

The lower level of phosphorylation there correlates with the longer

distance between the Ca of residue 426 and ATP Pc compared

with the corresponding distance for Ca of residue 431 (Table 2).

T426 likely serves an auxiliary role and the observations described

in the accompanying paper [28] point to an involvement in the

dephosphorylation step of the clock cycle (Fig. 8). Thus, the nST

mutant slows considerably the rate of dephosphorylation and both

the aST and nST mutants prevent KaiB from antagonizing KaiA’s

action [28].

We have already suggested a ‘‘ratcheting’’ mechanism for the

phosphorylation step that can explain the unidirectional nature of

the phosphorylation sequence on the basis of increased molecular

interactions at the subunit interface [4]. The structural data

indicate proximity to the ATP c-phosphate as the likely reason for

T432 being phosphorylated before S431 (Table 2). What then

determines the order of the dephosphorylation steps? The KaiC

crystal structures reveal different environments of the phosphates

at T432 and S431 with the former involved in inter-subunit

contacts and the latter contained in a single subunit (Figs. 1, 8).

KaiB binding and subunit shuffling [25–27] likely destabilize the

phosphothreonine at 432 to a larger extent than the phosphoserine

at 431, particularly if we consider that 431 could share its

phosphate with T426 (Figs. 5A,B and 8). Thus, the different

environments of 432 and 431, with pT432 being more exposed

Figure 8. Sequence of the phosphorylation and dephosphorylation events over the 24-hour cycle of the KaiABC clock and the role
of T426. The P-site loop along with the catalytic residue E318 from one KaiC subunit and a portion of the a7 helix (R385) from the adjacent subunit
are colored in black and green, respectively. Hydrogen bonds are blue, activation of T432 and S431 by E318 as well as phosphoryl transfers are
indicated by red arrows, and a wiggly red arrow implies phosphatase activity.
doi:10.1371/journal.pone.0007529.g008
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and a threonine residue in the immediate vicinity of pS431 can

potentially explain the order of dephosphorylation. Not only does

T426 stabilize phosphorylation at S431 via hydrogen bonding

(Fig. 1B), but the phosphate may be shuttling between the two

(Fig. 5B), with T426 also involved in dephosphorylation of pS431

[28]. The latter role is in line with the interactions between pS431

and the side chains of 426 residues in the crystal structures

(Figs. 1, 5). Moreover, the hampered ability of KaiB to

antagonize KaiA with the KaiCaST and KaiCnST mutants could

be due to their altered electrostatic surface potentials relative to wt-

KaiC as a result of the lack of a phosphorylatable residue at

position 426.

The crystal structures described here manifest only minor

conformational changes in the P-site loop region as a result of

single or double mutation (Fig. 4). The distances between P-sites

and the c-phosphate of ATP (Table 2) argue against large

conformational changes at the subunit interface for phosphoryl

transfer. However, the starkly different phosphorylation profiles

and period lengths of KaiCs with mutations in the P-site loop

region and adjacent residues (Fig. 3) demonstrate that not every

residue in the loop plays an important role. Whereas the T426A

and I430A mutants are arhythmic, the H429A mutant exhibits a

slightly longer period but a phosphorylation profile that is very

similar to that of wt-KaiC (Fig. 3). This is despite the fact that

H429 hydrogen bonds to pS431 (Fig. 1B). Similarly, mutations of

D417 and D427 (not shown) to alanine are of little consequence

although they lie in the immediate vicinity of S431 (Fig. 1B) and

T426, respectively. Therefore, these comparisons highlight the

functional importance of the T426 residue [28]. The evidence

presented here for a role of T426 in the dephosphorylation step

and R385 (located adjacent to the kinase active site) critically

affecting the balance between the hyper- and hypo-phosphorylat-

ed states also argues against a large spatial separation of the auto-

kinase and auto-phosphatase activities in KaiC.

Methods

Protein Expression and Purification
S. elongatus KaiC with a C-terminal (His)6-tag was produced in

E. coli (BL21, DE3 cell line) as previously described [14,18]. Site-

directed mutagenesis was performed with the QuikChangeH XL

Site-Directed Mutagenesis system (Stratagene, La Jolla, CA) and

all mutant proteins were expressed following the protocol used

with wt-KaiC. KaiC proteins were purified by metal affinity

chromatography (TALON IMAC resin, BD Biosciences Clontech)

and then by gel filtration chromatography (Sephacryl S-300 HR

resin, Amersham Biosciences). The solutions of purified proteins

were concentrated (10,20 mg/mL) and ATP in the buffer was

replaced with ATPcS by ultrafiltration for crystallization.

Crystallization and Diffraction Data Collection
Crystals of mutant proteins were grown using conditions

previously established for wt-KaiC [18]. Crystals were mounted

in nylon loops, cryo-protected in 25% glycerol containing reservoir

solution and frozen in liquid nitrogen. Diffraction data were

collected on 21-ID beam lines of the Life Sciences Collaborative

Access Team (LS-CAT) at the Advanced Photon Source, Argonne

National Laboratory (Argonne, IL) using either MarMosaic 225 or

MarMosaic 300 CCD detectors. All diffraction data were

integrated and scaled with either the HKL2000 [32] or XDS

[33] programs. Mutant structures were determined with the

Molecular Replacement technique using the program CNS [34]

and the wt-KaiC structure with PDB ID 3DVL [19] as the search

model. Initial refinement was carried out with the program CNS

and mutations were gradually built into the electron density,

followed by further positional and isotropic B-factor refinement.

Manual rebuilding was performed with the programs TURBO

[35] and COOT [36]. Water molecules were added gradually and

positional and isotropic B-factor refinement cycles were continued

with the program CNS. A summary of crystallographic parameters

is provided in Table 1. All illustrations were generated with the

program CHIMERA [37].

Dephosphorylation Assays
The R385A substitution was introduced by site-directed

mutagenesis into the plasmid pGEX-6P-1 carrying the wild-type

kaiC ORF [9]. The wild-type and R385A KaiC proteins were

expressed in E. coli and purified as described [22] with minor

modifications. Purified KaiC proteins (0.2 mg/mL) were incubated

at 30uC in 20 mM Tris-HCl, 150 mM NaCl, 5 mM MgCl2,

1 mM ATP, 0.5 mM EDTA, 8.4% (v/v) glycerol, pH 8.0 in the

absence of KaiA or KaiB. Phosphorylation states of KaiC proteins

were examined by SDS-PAGE as described in [28].

In Vitro Luminescence Rhythm and KaiC Phosphorylation
To introduce nucleotide substitutions responsible for E318A,

E318D, R385A, D417A, H429A, and I430A into the kaiC gene,

the PCR-based in vitro mutagenesis was performed with pCkaiABC

[5] as a template. The pCkaiABC derivatives were introduced into

a kaiABC-deleted (DkaiABC) strain carrying a kaiBCp::luxAB

reporter gene set [22]. The kaiBC promoter activity in each

mutant strain was monitored as bioluminescence [38]. To assess

the effects of mutations on KaiC phosphorylation in vivo, mutant

cells were grown in liquid BG-11 medium under cycles of 12-h

light and 12-h darkness, harvested at ZT4, and subjected to

immunoblot analysis with anti-KaiC antibodies.

Deposition of Atom Coordinates
All structure factors and final coordinates have been deposited

in the Protein Data Bank (www.rcsb.org); the PDB ID codes are:

3jzm (TSa KaiC), 3k0a (TaT KaiC), 3k09 (TdT KaiC), 3k0e (nST

KaiC), 3k0f (aSa KaiC), and 3k0c (Tae KaiC).

Supporting Information

Figure S1 Sequence alignment of the KaiC CI (top) and CII

(bottom) halves. Secondary structural elements are indicated by

cylinders (a-helices) and arrows (b-strands) above the sequences. P-

site loop residues including T426, S431 and T432 (CII) and the

corresponding residues A192, E197 and E198 (CI) are boxed.

Asterisks designate hydrophobic residues from the a 6, a 8, b 7, b
8 and b 9 regions that anchor the I425 (I191, CI), I430 (V196, CI)

and I433 (F199, CI) residues of the P-site loop (CII, Fig. 7).

Found at: doi:10.1371/journal.pone.0007529.s001 (0.75 MB TIF)

Figure S2 The hyper-phosphorylated phenotype of the R385A

mutant in vivo is likely due to increased auto-kinase activity rather

than diminished auto-phosphatase activity. Hyper-phosphorylated

wt-KaiC and R385A KaiC mutant proteins were incubated at

30C in the absence of KaiA or KaiB for up to 48 hours and the

ratio of the amount of each phospho-form of KaiC to the total

amount was determined at the indicated times by densitometric

analysis of CBB-stained PAGE gels. T and S refer to the T432 and

S431 residues, respectively. The analysis indicates similar

distributions of the various KaiC forms over time, the only

apparent differences being higher initial levels of the phosphor-

ylated forms with the R385A mutant and a slightly increased level

of the pS/T form for the mutant relative to wt-KaiC after
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24 hours. These data support the conclusion that the R385A

mutant does not hamper dephosphorylation but that the hyper-

phosphorylated phenotype (please see Fig. 3) is probably due to

increased kinase activity.

Found at: doi:10.1371/journal.pone.0007529.s002 (7.25 MB TIF)
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