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ABSTRACT: Oxidative stress can induce the formation of reactive electrophiles, such as DNA peroxidation
products, e.g., base propenals, and lipid peroxidation products, e.g., malondialdehyde. Base propenals and
malondialdehyde react with DNA to form adducts, including 3-(20-deoxy-β-D-erythro-pentofuranosyl)
pyrimido[1,2-R]purin-10(3H)-one (M1dG). When paired opposite cytosine in duplex DNA at physiological
pH,M1dG undergoes ring opening to formN 2-(3-oxo-1-propenyl)-dG (N2-OPdG). Previous work has shown
that M1dG is mutagenic in bacteria and mammalian cells and that its mutagenicity in Escherichia coli is
dependent on induction of the SOS response, indicating a role for translesion DNA polymerases in the bypass
of M1dG. To probe the mechanism by which translesion polymerases bypass M1dG, kinetic and structural
studies were conducted with amodel Y-familyDNApolymerase, Dpo4 from Sulfolobus solfataricus. The level
of steady-state incorporation of dNTPs opposite M1dG was reduced 260-2900-fold and exhibited a
preference for dATP incorporation. Liquid chromatography-tandem mass spectrometry analysis of the
full-length extension products revealed a spectrum of products arising principally by incorporation of dC or
dA opposite M1dG followed by partial or full-length extension. A greater proportion of -1 deletions were
observed when dT was positioned 50 of M1dG. Two crystal structures were determined, including a “type II”
frameshift deletion complex and another complex with Dpo4 bound to a dC 3M1dG pair located in the
postinsertion context. Importantly, M1dG was in the ring-closed state in both structures, and in the structure
with dC opposite M1dG, the dC residue moved out of the Dpo4 active site, into the minor groove. The results
are consistent with the reported mutagenicity of M1dG and illustrate how the lesion may affect replication
events.

Covalent modification of DNA leads to a complex cellular
response that includes altered DNA replication, DNA damage
signaling, DNA repair, cell cycle arrest, and cell death (1). The
pattern of the response depends upon the chemical nature and
level of the damage. An important lesion that occurs in human
genomic DNA is 3-(20-deoxy-β-D-erythro-pentofuranosyl)pyri-
mido[1,2-R]purin-10(3H)-one (M1dG) (Figure 1), which is pro-
duced by reaction of dG residues with the DNA peroxidation

products, base propenals, or the lipid peroxidation product
malondialdehyde (MDA)1 (2-4). M1dG adducts have been
reported to be present at a density of 5400 molecules per cell in
healthy human liver (5), and the levels have been reported to
increase following exposure to carbon tetrachloride or polychlori-
nated biphenyls (6, 7). Repair of M1dG occurs by the nucleotide
excision repair pathway (8), and M1dG residues, possibly excised
from the genome, have been detected in human urine (9).

Base propenals and MDA are mutagenic in Salmonella
typhimurium (3, 10), and reaction of single- or double-stranded†This work was supported by the National Institutes of Health (R37
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1Abbreviations: BSA, bovine serum albumin; CID, collision-induced
dissociation; ds, double-stranded; DTT, dithiothreitol; ESI, electro-
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UP, ultraperformance); LC-MS/MS, liquid chromatography-tandem
mass spectrometry; MALDI-TOF, matrix-assisted laser desorption
ionization time-of-flight; MDA, malondialdehyde; MOPS, 3-morpho-
linopropane-1-sulfonic acid; MS, mass spectrometry; PdG, 1,N2-pro-
panodeoxyguanosine; pol, (DNA) polymerase; pol T7-, bacteriophage
pol T7 (exonuclease deficient); ss, single-stranded; UDG, uracil DNA
glycosylase; wt, wild type.
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DNA with malondialdehyde followed by transformation into
Escherichia coli or human cells, respectively, leads tomutations at
dG residues and frameshift mutations (mainly deletions) (11, 12).
Replication of viral genomes or shuttle vectors containing a
single, site-specifically positioned M1dG leads to the induction
of base substitutions (primarily M1dG to dT and M1dG to dA),
deletions, and untargeted mutations in the vicinity of the ad-
duct (13). The type of mutation is sequence-dependent with a
larger proportion of mutations occurring in reiterated sequences.

Mutations induced by M1dG in E. coli are dependent on the
induction of the SOS response and are significantly reduced by
deletion of the umuC or umuD locus (8), indicating that error-
prone translesion polymerases are important in M1dGmutagen-
esis. TheY-familyDNApolymerases represent a specialized class
of enzymes that are thought to facilitate bypass of DNA adducts
when the replicative polymerases are inhibited (14, 15). To date,
no crystal structures ofE. coli pols IV (dinB) and V (umuD0C) are
available. The Y-family polymerase Dpo4 from Sulfolobus
solfataricus, which is a dinB homologue, has been very useful
for determining the structural and kinetic properties of lesion
bypass. The structural characteristics of the Y-family polymerase
core are conserved in archaeal and eukaryotic systems (16), with
minor differences probably accounting for variable biochemical
properties between enzymes (17-28). To improve our under-
standing of the molecular basis for mutagenic profiles observed
following exposure to the genotoxic agentMDA,wehave studied
the in vitro catalytic properties of the model Y-family DNA
polymerase Dpo4 from S. solfataricus opposite M1dG. Of parti-
cular interest was the possibility that Dpo4 enhances the ring
opening of M1dG during replication, because ring opening of
M1dG to N2-OPdG occurs spontaneously in duplex DNA (29)
and has been proposed to contribute to error-free bypass of
M1dG by certain polymerases (13). These results provide insights
into the bypass of exocyclic DNA lesions and address the
question of M1dG ring opening in the Dpo4 active site.

MATERIALS AND METHODS

Materials. Wild-type Dpo4 was expressed in E. coli and puri-
fied to electrophoretic homogeneity as described previously (27).

All unlabeled dNTPs were obtained from Amersham Bio-
sciences (Piscataway, NJ), and [γ-32P]ATP was purchased from
PerkinElmer Life Sciences (Boston, MA). Oligonucleotides con-
taining M1dG were synthesized as described previously (30).
Unmodified oligonucleotides used in this work were synthesized
by Midland Certified Reagent Co. (Midland, TX) and purified
using HPLC by the manufacturer, with analysis by matrix-assisted
laser desorption time-of-flight MS. The modified 23-mer oligonu-
cleotide for the replication studies was synthesized by a post-
synthetic modification approach as previously described (31). The
modified 18-mer oligonucleotides were prepared from the modi-
fied phosphoramidite reagent (30, 32). The modified oligonucleo-
tides were purified by HPLC. A total of six primer-template
DNAsubstrate sequenceswereused in thekinetic analysis (Table 1).
The template oligonucleotide sequence used in the mass spectral
analysis was either 50-TCACXGAATCCTTCCCCC-30 or 50-TCA-
TXGAATCCTTCCCCC-30, where X indicates M1dG. The 13-
base primer sequence used in the mass spectral analyses was 50-G-
GGGGAAGGAUTC-30. The mass of each of theM1dG-modified
oligonucleotides was determined experimentally by MALDI-TOF
MS: 50-TCACXGAATCCTTACGAGCCCCC-30 [MALDI-
TOF MS (HPA) m/z calcd for (M - H) 6965.6, found 6965.2],
50-TCATXGAATCCTTACGAGCCCCC-30 [MALDI-TOFMS
(HPA) m/z calcd for (M - H) 6977.1, found 6976.9], 50-TCAC-
XGAATCCTTCCCCC-30 [MALDI-TOF MS (HPA) m/z calcd
for (M - H) 5392.0, found 5393.1], and 50-TCATXGAATC-
CTTCCCCC-30 [MALDI-TOFMS (HPA)m/z calcd for (M-H)
5407.0, found 5407.0], where X denotes M1dG.
Generation of Primer-Template DNA for in Vitro

Experiments. The 18-base primer oligonucleotide 50-GGGG-
GCTCGTAAGGATTC-30 was 50-phosphorylated with T4 poly-
nucleotide kinase with 250 μCi of [γ-32P]ATP (>6000 Ci/mmol)
in 50 mMMOPS buffer (pH 7.5) containing 10 mMMgCl2 and
5 mMDTT for 1 h at 37 �C. The 32P-labeled primers were mixed
withM1dG-containing or control template in a 1:1 molar ratio in
the presence of 40 mM NaCl and heated to 95 �C for 2 min,
followed by slow cooling overnight.
Steady-State Kinetics. Dpo4 stocks were diluted in 50 mM

Tris-HCl buffer (pH 7.5) containing 1mMDTT, 0.5mMEDTA,
and 10% glycerol (v/v). Reactions were conducted in buffer
containing 50 mM Tris-HCl buffer (pH 7.5) containing 50 mM
NaCl, 5 mM DTT, 5 mM MgCl2, 100 μg/mL BSA, and 5%
glycerol (v/v). Typical reaction volumes (of 10 μL) contained
50 nM annealed, 50-end labeled primer-template, 5 nM Dpo4,
and varying concentrations of individual nucleotide triphos-
phates (from 1 nM to 1 mM) in reaction buffer. Enzyme, buffer,
andDNA template were preincubated at 37 �C for 5 min prior to
the addition of MgCl2 and dNTP to initiate the reaction. The
reaction incubation periods were optimized to ensure that the
data collected represented the initial velocities of the reactions.
Reactions were terminated with the addition of 10 μL of 95%
formamide, 10 mM EDTA, 0.03% bromophenol blue, and
0.03% xylene cyanol, and reaction mixtures were then heated
to 95 �C for 2 min to ensure reaction quenching. Products
were visualized on 20% polyacrylamide (w/v)/7 M urea gels
by electrophoresis at a constant voltage (3000 V) for 3 h. The
products were then visualized using a phosphorimager and
quantitated using Quantity One.
Transient-State Kinetics. All pre-steady-state experiments

were performed using a KinTek RQF-3 model chemical quench-
flow apparatus (KinTek Corp., Austin, TX) with 50 mM Tris-
HCl (pH 7.4) buffer in the drive syringes. All RQF experiments

FIGURE 1: Schematic illustration of pathways generating M1dG/
N2-OPdGand the equilibriumbetween the ring-open and ring-closed
forms of the lesion.
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were conducted at 37 �C in 50 mM Tris-HCl (pH 7.4) buffer
containing 50 mMNaCl, 5 mMDTT, 100 μg/mL BSA, and 5%
(v/v) glycerol. Dpo4 (350 nM) was incubated with DNA sub-
strate 1 (200 nM) containing either G orM1dG in the template at
the insertion position, and the reaction was initiated uponmixing
in the quench apparatus with a solution containing dNTP (1
mM) and MgCl2 (5 mM). Polymerase catalysis was stopped by
the addition of 500 mM EDTA (pH 9.0). Substrate and product
DNA were separated by electrophoresis on a 20% polyacryl-
amide (w/v)/7Murea gel. Results obtained under single-turnover
conditions were fit to eq 1

y ¼ Að1-e-kobstÞ ð1Þ
whereA is the product formed in the first binding event, kobs is the
rate constant defining polymerization under the conditions used
for the experiment being analyzed, and t is time.
LC-MS/MS Analysis of Oligonucleotide Products

from Dpo4 Reactions. Dpo4 (5 μM) was preincubated with
primer-template DNA (10 μM), and the reaction was initiated
by addition of dNTP (1 mM each) andMgCl2 (10 mM) in a final
volume of 200 μL. Dpo4 catalysis was allowed to proceed at
37 �C for 5 h in 50 mMMOPS (pH 7.4) buffer containing 50 mM
NaCl, 1 mM DTT, 100 μg/mL BSA, and 5% glycerol (v/v).
The reaction was terminated by extraction of the remaining
dNTPs using a size-exclusion chromatography column (Bio-Spin
6 chromatography column, Bio-Rad, Hercules, CA). Concen-
trated stocks of MOPS (pH 7.4), DTT, and EDTA were added
to restore the concentrations to 50, 5, and 1 mM, respectively.
Next, E. coli uracil DNA glycosylase (20 units) (New England
Biolabs, Ipswich, MA) was added, and the solution was incu-
bated at 37 �C for 6 h to hydrolyze the uracil residue on the
extended primer. The reaction mixture was then heated at
95 �C for 1 h in the presence of 0.25 M piperidine, followed
by removal of the solvent by centrifugation under vacuum.

The dried sample was resuspended in 100 μL of H2O for MS
analysis.

LC-MS/MS analysis (21, 27) was performed on a Waters
Aquity UPLC system (Waters, Milford, MA) connected to a
Finnigan LTQ mass spectrometer (Thermo Fisher Scientific,
Waltham, MA), operating in the ESI negative ion mode, as
described previously (20). The nomenclature used in Tables S1-
S29 of the Supporting Information has been described pre-
viously (33). An estimate for the amount of each product in the
reaction mixture was calculated by integrating the area of the
corresponding peak in a selected ion trace for the ion of interest.
Crystallization of Dpo4-DNA Complexes. Dpo4 was

crystallized in complex with two primer-template DNA se-
quences: 13-mer primer-18-mer template and 14-mer primer-
18-mer template. In both instances, the 18-mer template sequence
was 50-TCA CXG AAT CCT TCC CCC-30, where X is M1dG.
The 13-mer primer strand was 50-GGG GGA AGG ATT C-30,
and the 14-mer primer strandwas 50-GGGGGAAGGATTCC-
30. Dpo4wasmixedwithDNA (1:1.2molar ratio) in 20mMTris-
HCl buffer (pH 7.4, 25 �C) containing 60 mMNaCl, 4% glycerol
(v/v), and 5mMβ-mercaptoethanol and then placedon ice for 1 h
prior to incubation with CaCl2 (5 mM) and dGTP (1 mM). The
final Dpo4 concentration was ∼10 mg/mL. The complexes were
crystallized by sitting-drop vapor diffusion as described pre-
viously (27) with PEG 3350 (7.5-10%), Ca(OAc)2 (100 mM),
and glycerol (2.5%) in the reservoir solution.
X-ray Diffraction Data Collection and Processing. The

X-ray diffraction data sets for the two complexes were col-
lected at the Advanced Photon Source (APS, 21-ID, LS-CAT,
Argonne, IL) at 110 K and using a synchrotron radiation
wavelength of 1.0 Å. Indexing and scaling were performed using
XDS (34). Both structures belong to space group P21212. The
resulting data sets for the 14C-M1dG and M1dG-dGTP
complexes were of good quality, with Rmerge values of 5.3
and 8.7%, respectively. CCP4 package programs, including
TRUNCATE (35), were used for further processing of the data.
Structure Determination and Refinement. A refined wild-

type Dpo4-dG complex [Protein Data Bank entry 2bqr (27)]
without solvent molecules, ions, and dGTP was used as the
startingmodel for both data sets. The initial position of themodel
was optimized by several rounds of rigid body refinement
while the resolution of the diffraction data was gradually in-
creased.Manual model rebuilding was conducted with TURBO-
FRODO.2 The maps were computed using the σA modified
coefficients (36). Clear positive density for the Ca2þ ions and the
dGTP was observed in the initial difference Fourier electron
density maps of both complexes. In the case of the cytosine at
postion 14 in the primer of the 14C-M1dG structure, there was
clear positive density corresponding to the phosphate and the
pyrimidine base following molecular replacement, but a discon-
tinuity in the region corresponding to the ribose moiety required
several rounds of refinement before the final position of the base
was determined. The CNS package (37) was used for the
refinement of the models by performing simulated annealing,
gradient minimization, refinement of individual isotropic tem-
perature factors, and individual occupancy. The crystallographic
figures were prepared using Pymol.3

Table 1: Sequencesa of the DNA Substrates

aWhere X denotes G or M1dG.

2Cambillau, C., and Roussel, A. (1997) Turbo Frodo, OpenGL 1
version, Universit�e Aix-Marseille II, Marseille, France.

3DeLano, W. L. (2002) The pyMOL Molecular Graphics System,
DeLano Scientific, San Carlos, CA.
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Comparison of Dpo4-Catalyzed Bypass of M1dG and
N2-OPdG. M1dG-containing template DNA (substrate 1) was
annealed to a complementary primer using two conditions.
32P-radiolabeled primer was added to template DNA (1:1) in
the presence of MOPS (50 mM at either pH 7.5 or 10) and NaCl
(40 mM), heated to 95 �C, and slowly cooled to room tempera-
ture. Annealing at pH 10 results in formation of the ring-opened
N2-OPdG. M1dG remains in the ring-closed form in ssDNA at
pH 7.5 (38). Dpo4 catalysis of incorporation of either dCTP or
dATP (1 mM) was then assessed under four conditions. Under
the first condition, primer-template DNA annealed at pH 7.5
was used as a control to measure dNTP incorporation opposite
M1dG. Under the second condition, primer-template DNA
annealed at pH 10 was added to assay buffer containing MOPS
(50 mM, pH 7.5), NaCl (50 mM), 1 mMDTT, 100 μg/mL BSA,
and 5% glycerol (v/v), and the reaction was started immediately
by addition of dNTP (1 mM) and MgCl2 (5 mM). Under these
conditions, Dpo4 catalysis should encounter the ring-opened
N 2-OPdG adduct. The third condition involved adding assay
buffer (pH 7.5) to primer-template DNA that was annealed at
pH10 and incubating the sample for approximately five half-lives
of the N2-OPdG ring closure (2 h) before initiating polymerase
catalysis. The fourth and final experimental setup involved
incubating primer-template DNA (pH 10), Dpo4, and assay
buffer (pH 7.5) for 2 h prior to initiation of polymerase activity.
The 2 and 5 h incubations should both have allowed quantitative
ring closure to occur for DNA annealed at pH 10. Only the
second condition tested the ability of Dpo4 to bypass the ring-
opened form of the adduct.

RESULTS

Steady-State Kinetic Analysis of Dpo4 Catalysis oppo-
site M1dG. Single-nucleotide incorporation assays were per-
formed to measure steady-state parameters of Dpo4 catalysis.
Two DNA substrates that differed only in the base to the 50 side
of the adduct were used (Table 1, substrates 1 and 2). Incorpora-
tion of dATPwas favored for both substrates (Table 2). A higher
kcat was the primary reason dATP was favored when C was
positioned 50 ofM1dG (substrate 1). Conversely, a lowerKm,dNTP

led to more efficient incorporation of dATP when T was 50 of
M1dG (substrate 2). The catalytic efficiency (kcat/Km,dNTP) was
decreased 260- and 430-fold for incorporation of dATP for
substrates 1 and 2, respectively. For substrate 1, dCTP was the
second most efficient insertion event, and dCTP was the least
favored event with substrate 2.
Transient-State Kinetic Analysis of Dpo4-Catalyzed

dNTP Incorporation opposite M1dG. Single-turnover experi-
ments were performed, but incorporation of both dCTP and
dATP was strongly inhibited in the presteady state (Figure 2A).
Incorporation of dCTP yielded a small fraction of product
(∼7.5%) in the presteady state, but after 10 s, incorporation of
dATPwas clearlymore abundant (Figure 2B). It is possible that a
small fraction of dCTP binding events induce the ring-opened
state of M1dG in the polymerase active site, resulting in the small
burst in product observed in the presteady state, but dATP is
clearly favored over accurate bypass in every other kinetic
measure of Dpo4 catalysis.
Analysis of Primer Incorporation/Extension Products

Using LC-MS/MS. The ability of M1dG to generate frame-
shift mutations in cells could play a significant role in disrupt-
ing coding sequences. To assess the propensity for frameshift

mutations by Dpo4, we analyzed incorporation/extension pro-
ducts in vitro using LC-MS/MS. In contrast to single-nucleotide
incorporation assays, analysis of full-length extension products in
the presence of all four dNTPs can provide a measure of
truncated, untargeted (i.e., random), mutations and/or frame-
shifted extension products.

In vitro extension was performed on two M1dG-modified
templates that differed in the identity of the base on the 50 side of
theM1dG lesion (dC vs dT) (Figure 3). Bypass ofM1dGbyDpo4
was highly error-prone in both sequence contexts. In the 50-
C-(M1dG)-G-30 sequence context (substrate 7), 48% of the
extension products were error-free (Figure 3A). In the 50-
T-(M1dG)-G-30 sequence context (substrate 8), 17% of the
extension products were error-free (Figure 3B). For substrate
7,∼17 or 2%of the extension products was derived froma simple
misinsertion of dATP or dTTP opposite M1dG, respectively.
Two frameshift deletion products were observedwith substrate 7.
The first product [50-pTC-GTGA-30 (7%)] results from a deletion
at the adduct site, and a second product results frommisinsertion
of A followed by skipping of the next base [50-pTCA-TGA-30

(3%)]. The former can be rationalized by insertion of dGTP
opposite the dC that is 50 of M1dG. A similar product was
observed for the 1,N2-ε-dG adduct in the same sequence (27).
Crystallographic analysis of a ternaryDpo4 complex bound to 1,
N 2-ε-dG-modified DNA revealed that the extended purine ring
system of the two-carbon etheno bridge provided a π-stacking
platform for the incoming dGTP, which formed a nascent
Watson-Crick pair with the 50-dC of the template. Three related
products were identified in 6, 3, and 4% relative yield that result
from misinsertion of dATP opposite M1dG followed by error-
prone extension.

A variety of error-prone bypass products were identified from
the insertion and extension of substrate 8 (Figure 3B). As stated
above, the extent of error-free bypass was much reduced (17%)
with substrate 8. Misinsertion of dATP and dGTP followed by
accurate extension accounted for only 9 and 1% of the product
distribution, respectively. The most prevalent products were
those derived from a one-base deletion opposite the lesion

Table 2: Steady-State Kinetic Parameters for One-Base Incorporation by

Dpo4

template

base dNTP

kcat
(s-1)

Km,dNTP

(�103 μM)

kcat/KM

(�103 μM-1 s-1)

fold reduction

from dCTP:dG

Substrate 1 with dC 50 of G/M1dG

dG dCTP 160( 5 3.2 ( 0.6 49 -
dATP 20( 2 260( 90 0.075 650

dTTP 35( 1 200( 40 0.18 270

dGTP 16( 2 70( 40 0.22 220

M1dG dCTP 9.3( 1.7 120( 90 0.080 610

dATP 24 ( 1 130( 20 0.19 260

dTTP 3.8( 0.3 110( 30 0.034 1400

dGTP 1.1 ( 0.1 30( 5 0.035 1400

Substrate 2 with dT 50 of G/M1Dg

dG dCTP 890( 30 4.3( 0.5 210 -
dATP 22( 1 120( 20 0.18 1.200

dTTP 58( 2 230( 40 0.25 840

dGTP 19( 1 400( 120 0.048 4400

M1dG dCTP 29( 2 400 ( 80 0.073 2900

dATP 15( 1 30 ( 5 0.49 430

dTTP 15( 1 130 ( 30 0.12 1800

dGTP 16( 2 180 ( 70 0.089 2400
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(59%); these seven products differed in the progress of the
extension steps. Two related deletion products resulted from
error-prone extension (6%). An additional product was char-
acterized as resulting from the correct insertion of dCTP followed
by highly error-prone extension (5%).

In both sequence contexts, the steady-state catalytic efficiency
was best for the insertion of dATP (Table 2). The degree of
insertion of dATP opposite M1dG was 260- and 430-fold lower
than the degree of insertion of dCTP opposite G in the 50-C-(X)-
G-30 (substrate 1) and 50-T-(X)-G-30 (substrate 2) sequences,
respectively. Extension products arising from the initial insertion
of dATP into the 50-C-(M1dG)-G-30 sequence (substrate 7)
accounted for 43% of the observed LC-MS products, while
48% of the observed LC-MS products resulted from initial
insertion of dCTP in the same sequence. Kinetic analysis shows
that the catalytic efficiency for dCTP insertion was ∼2.4-fold
lower than for insertion of dATP in the 50-C-(M1dG)-G-30

sequence context (Table 2). On the basis of the kinetic results,
we would expect to see a greater proportion of products resulting
from dATP insertion in the LC-MS analysis of substrate 7 than
what is actually observed. The larger-than-expected fraction of
dCTP insertion products in the LC-MS analysis suggests that
extension from the M1dG 3dC template-primer terminus is
favored over extension from an M1dG 3dA terminus, at least in
the 50-C-(M1dG)-G-30 sequence.

Dpo4 inserts dATP opposite the M1dG lesion in the 50-
T-(M1dG)-G-30 sequence 6.7-fold more efficiently than dCTP
(Table 2). The misinsertion of dATP opposite M1dG represents

73% of the total extension products observed by LC-MS in
the 50-T-(M1dG)-G-30 sequence context (Figure 3B). The small
amount of error-free products observed in the 50-T-(M1dG)-G-30

sequence (17%) results from the fact that (i) Dpo4 favors
insertion of dATP and (ii) Dpo4 can readily accommodate a
pairing between the inserted dA and the thymidine on the 50 side
of M1dG by skipping over the lesion. The kinetic efficiency for
insertion of dTTP or dGTP opposite M1dG was slightly better
than that for insertion of dCTP using the 50-T-(M1dG)-G-30

template; however, in the 50-T-(M1dG)-G-30 sequence context,
only 1% of the observed products resulted from initial misinser-
tion dGTP, and no productswere characterized that were derived
from initial insertion of dTTP, suggesting that extension of a
template-primer terminus containing dG or dT opposite M1dG
is highly disfavored.
Steady-State Kinetic Analysis of Next-Nucleotide Ex-

tension past M1dG. The identities of the full-length extension
products did not correspond to our expectations based on the
results of the single-nucleotide incorporation experiments. Accu-
rate insertion of dC into the full-length products in both sequence
contexts was more efficient than anticipated from single-nucleo-
tide incorporation experiments. We determined the steady-state
kinetic parameters for single-nucleotide extension from M1dG 3
dC and M1dG 3dA mispairs (Table 3). The results indicated
that M1dG 3dC mispairs (substrate 3) are extended 7.5-fold
more rapidly than M1dG 3dA mispairs (substrate 4) in the

FIGURE 2: Pre-steady-state analysis of Dpo4-catalyzed incorpora-
tion opposite M1dG. (A) Dpo4 (350 nM) was incubated with
radiolabeled 18/23-mer DNA (200 nM), the indicated dNTP (1 mM),
and MgCl2 (5 mM). The data were fit to eq 1 to yield the following
kinetic parameters: for dCTP 3G (9), A=170 ( 9 nM and kobs=
8.9 ( 2.3 s-1; for dCTP 3M1dG (blue b), A=15 ( 2 nM and kobs=
0.81( 0.35 s-1; for dATP 3M1dG (red2),A=95( 4 nM and kobs=
0.051 ( 0.004 s-1. (B) The results from panel A are shown to
illustrate the small amount of product formed rapidly during dCTP
insertion opposite M1dG.

FIGURE 3: LC-MSanalysis of Dpo4-catalyzed full-length extension
products. (A) ESI mass spectrum of products derived from Dpo4-
catalyzed extension of 13/18-mer DNA containing M1dG with
cytosine to the 50 side of the lesion. The products identified in the
spectrum are summarized. (B) ESI mass spectrum of products
derived fromDpo4-catalyzed extension of 13/18-mer DNA contain-
ing M1dG with thymidine to the 50 side of the lesion. The products
identified in the spectrum are summarized.
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50-C-(M1dG)-G-30 sequence context. Thus, even though dC is not
incorporated opposite M1dG more readily than dA, the M1dG 3
dC mispair is extended more efficiently, resulting in a higher-
than-expected fraction (48%) of error-free products observed
during LC-MS analysis of the extension products.

Extension of a primer containing dA opposite M1dG was
found to proceed most efficiently when dTTP was present in the
reaction mixture (Table 3) even though the template base should
be dT (substrate 6), which would indicate that dA is not paired
with M1dG but is stably paired with the template thymidine to
the 50 side of M1dG in what is often termed a “type II”
conformation (39).With a stable type II orientation, the template
base in substrate 6would be dA,which explains the preference for
dTTP during extension. The favorable insertion of dATP oppo-
site M1dG combined with the increased kinetic propensity to
extend the type II complex is consistent with the larger fraction
of -1 deletion products observed in the LC-MS/MS analysis.
Single-Nucleotide Incorporation of dNTPs opposite

Ring-Opened N2-OPdG. Primer-template DNA containing
the M1dG modification was prepared using conditions that
should generate the ring-opened form of the MDA-derived
adduct. At pH 10, the ring-opened form (N2-OPdG) is fa-
vored (40). The half-life of ring closing is relatively slow so that
upon addition of pH 7.4 assay buffer a comparison can be made
between Dpo4-catalyzed bypass of M1dG and N2-OPdG (41).
Experiments analogous to those described above for single-
nucleotide incorporation opposite M1dG were conducted. The
results showed no clear difference in the rate of nucleotide
incorporation opposite either M1dG or N2-OPdG (Figure S1
of the Supporting Information). Dpo4 polymerization was
strongly inhibited by both forms of the lesion, as evidenced by
the extremely slow rate of dCTP incorporation. As with M1dG,
dATP incorporation occurred at a faster rate than dCTP
incorporation. Similar experiments performed with the Klenow
fragment of DNA polymerase revealed a qualitative and quanti-
tative difference in bypass of M1dG and N2-OPdG, so it is
unlikely that the similarity in bypass observed in these experi-
ments is due to rapid ring closing of N2-OPdG to M1dG in
solution (38). However, we cannot rule out the possibility that
Dpo4 promotes ring closing of N2-OPdG to M1dG when the
modified template is in complex with the enzyme.
Dpo4 3M1dG 3DNA Ternary Complex Structures. Pre-

vious studies have shown that placing cytosine oppositeM1dG in

duplex DNA at pH 6.8 results in ring opening to form
N 2-OPdG (29). Ring opening is reversible (t1/2 = 23 min at
neutral pH) and does not occur in ssDNA at physiological
pH (40, 41). It is of interest to know if DNA polymerases
facilitate ring opening during bypass of M1dG-containing
DNA because the nature of the lesion during replication could
be a strong determinant of whether bypass is error-free or error-
prone. We determined two Dpo4 3M1dG 3DNA 3dGTP 3Ca

2þ

ternary structures to ascertain the structural properties of
M1dG that are relevant to translesion DNA synthesis (Table 4).

Table 3: Steady-State Kinetic Parameters for Next-Base Extension past

M1dG by Dpo4

primer

pair dNTP

kcat
(s-1)

Km,dNTP

(�103 μM)

kcat/KM

(�103 μM-1 s-1)

fold reduction

from dC:dG

extension

Substrates Containing dC 50 of G/M1dG

dC 3 dG dGTP 420( 10 5.0( 0.7 84 -
dA 3 dG dGTP 24( 1 52( 5 0.47 180

dC 3M1dG dGTP 6.6( 0.3 2.2( 0.5 2.9 29

dA 3M1dG dGTP 8.3( 0.5 13 ( 4 0.64 130

Substrates Containing dT 50 of G/M1dG

dC 3 dG dATP 1100( 30 14 ( 1 78 -
dA 3 dG dATP 2.1( 0.1 64( 18 0.033 2400

dC 3M1dG dATP 28( 1.0 5.6( 1.0 5.0 16

dA 3M1dG dATP 1.4( 0.1 56 ( 13 0.025 3100

dA 3M1dG dTTP 2.6 ( 0.3 13( 7 0.2 390

Table 4: Crystal Data and Refinement Parameters for the Ternary (pro-

tein 3DNA 3 dGTP) Complexes of Dpo4

14C 3M1dG M1dG 3 dGTP

X-ray source APS (LS-CAT) APS (LS-CAT)
beamline ID-21 ID-21

detector MAR CCD MAR CCD

wavelength (Å) 0.98 0.98

temperature (K) 110 110

no. of crystals 1 1

space group P21212 P21212

unit cell [a, b, c (Å)] 92.61, 103.14, 52.00 93.54, 102.54, 52.18

resolution range (Å) 30.0-2.60 30.0-2.45

highest-resolution shella 2.69-2.60 2.50-2.45

no. of measurements 87070 (8060) 65537 (7112)

no. of unique reflections 15716 (1443) 17600 (1776)

redundancy 5.5 (5.5) 3.7 (4.0)

completeness (%) 99.5 (96.8) 97.8 (99.8)

Rmerge
b 5.3 (45.5) 8.7 (34.4)

signal to noise ratio (ÆI/σIæ) 23.10 (4.38) 10.89 (3.93)

solvent content (%) 59.2 59.5

model composition

(asymmetric unit)

no. of amino acid residues 341 342

no. of water molecules 100 137

no. of Ca2þ ions 3 3

no. of template nucleotides 16 17

no. of primer nucleotides 14 13

no. of dGTP molecules 1 1

Rf
c (%) 20.5 21.7

Rfree
d (%) 25.2 27.2

estimated coordinate error (Å)

from Luzatti plot 0.33 0.33

from Luzatti plot (c-ve) 0.43 0.45

from sA plot 0.38 0.39

from sA plot (c-ve) 0.43 0.53

temperature factor

from Wilson plot (Å2) 61.8 47.1

mean isotropic (Å2) 59.2 45.0

root-mean-square deviation in

temperature factor

two bonded main

chain atoms (Å)

1.25 1.37

two bonded side

chain atoms (Å)

1.89 1.99

root-mean-square deviation

from ideal values

bond lengths (Å) 0.008 0.007

bond angles (deg) 1.3 1.3

dihedral angles (deg) 21.6 21.8

improper angles (deg) 1.56 1.94

aValues in parentheses correspond to the highest-resolution shells.
b Rmerge=

P
hkl

P
j=1,N |ÆIhklæ - Ihklj|/

P
hkl

P
j=1,N |Ihklj|, where the outer

sum (hkl) is taken over the unique reflections. c Rf=
P

hkl |Fohkl| - k|Fchkl|/P
hkl |Fohkl|, where |Fohkl| and |Fchkl| are the observed and calculated

structure factor amplitudes, respectively. d Rfree idem, for the set of reflec-
tions (5% of the total) omitted from the refinement process. eCross-
validation.
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The first structure determined (M1dG 3dGTP) contained
what represents formation of a -1 frameshift deletion product
in the active site of Dpo4 (Figure 4A). TheM1dGmoiety is in the
ring-closed form and base-stacked between adjacent template
bases. Similar to the case for the other so-called type II Dpo4
complexes (39), nascent pairing between the incoming dGTP and
the dC to the 50 side of M1dG is observed, leaving an extended
(6 Å) gap between the R-phosphate of dGTP and the 30-hydroxyl
group at the primer terminus. An ordered water molecule bridges
the 30-hydroxyl group and the phosphate. Three Ca2þ ions are
coordinated in or near the active site, with two serving to
coordinate dGTP binding. Other structural features, e.g., overall
protein conformation, are quite similar to those observed in
previous Dpo4 structures (21, 28, 39). Attempts to crystallize
Dpo4 andM1dG in the presence of an incoming dCTP or dATP
were unsuccessful.

A second structure was determined using a 14-mer primer
sequence in which a 30 terminal cytosine (position 14) is designed
to pair with the template M1dG (14C 3M1dG). In stark contrast
to what is observed in duplex DNA, M1dG remains in the ring-
closed form even when cytosine is covalently attached to the
primerDNAoppositeM1dG (Figure 4B). The reasonM1dG is in
the ring-closed state is apparent from the crystal structure.
Instead of pairing with the lesion to stabilize the ring-opened
N2-OPdG, the cytosine at the 30 terminus of the primer is
displaced into the growing minor groove. Such a conformation
has been observed previously during Dpo4-catalyzed bypass of
O6-benzylguanine and is considered to be nonproductive (42).
The 14C 3M1dG structure suggests that the Dpo4 active site may

not be restrictive enough to force cytosine to stabilize M1dG ring
opening. Another interpretation would consider that the level of
cytosine hydration is most likely reduced in the active site of the
polymerase relative to DNA in solution. Desolvation at the N3
atom of a dCTP molecule as it enters the polymerase active site
may result in a reduced rate of ring opening. Failure to generate
the ring-opened N2-OPdG leaves an exocyclic DNA adduct that
is well-stacked in the template strand, presenting a poor instruc-
tional site for Dpo4.

DISCUSSION

Previous work has shownM1dG to be a mutagenic lesion (13),
but the mechanism of polymerase bypass opposite M1dG re-
mains largely undefined. To improve our understanding of the
basis for M1dG-induced mutagenesis, the mechanism of transle-
sion DNA synthesis opposite M1dG by the model Y-family
polymerase Dpo4 was studied at a molecular level using kinetic
and structural approaches. Steady-state and transient-state kine-
tic results both indicate that Dpo4 catalysis is inhibited byM1dG
(260-2900-fold), with dATP being the favored insertion event
for both sequences tested (Table 2 and Figure 2). However,
kinetic analysis of the next-base insertion event showed that
extension of theM1dG 3dC pair, while inhibited∼30-fold relative
to that of unmodified substrates, is ∼8-fold more efficient than
extension of theM1dG 3dApairwhen dC is 50 toM1dG (Table 3).
In the 50-T-(M1dG)-G-30 sequence context, kinetic analysis
predicts a shift toward higher levels of -1 deletion products
(Table 3). The increase in -1 deletion products results from the
ability of Dpo4 to accommodate two template bases in the
polymerase active site. The efficient insertion of dA opposite
M1dG then leads to a large portion of substrate molecules being
extended as -1 deletions when T is 50 to the adduct site. The -1
deletion products are not as abundant in the 50-C-(M1dG)-G-30

sequence context because dGTP is not readily inserted opposite
M1dG (Table 2).Analysis of the full-length extension products by
LC-MS/MS is consistent with the kinetic results but also reveals
unpredictable error-prone bypass events (Figure 3).

Both the kinetic and LC-MS/MS results obtained with Dpo4
are largely consistent with the mutagenic profiles obtained for
replication of site-specifically modified shuttle vectors in E. coli
and COS-7 cells (13). Frameshift mutations have been observed
during replication of ssDNA containing M1dG in wild-type
(LM102) and NER-deficient (LM103) E. coli strains (13). Our
data clearly show that frameshift deletions are generated during
Dpo4-catalyzed bypass of M1dG (Figure 3). In E. coli (LM102),
insertion of M1dG resulted in a targeted mutation frequency
of 18% (when corrected for strand bias) (8). In NER-deficient
E. coli strains (LM103, LM115, and NR10148), the mutation
frequency of M1dG is increased 2-3-fold (8), which is relatively
consistent with the levels of misinsertion obtained with Dpo4
(Table 2 and Figure 3). The primary mutations observed
for M1dG replication in either E. coli or COS-7 cells were either
G to T transversions or G to A transitions (8, 13). Dpo4 is
more efficient at the insertion of dATP opposite M1dG, and this
result differs from the mutagenesis results because very little
dTTP incorporation either is observed in the extension pro-
ducts determined by LC-MS (Figure 3) or is predicted by
kinetic analysis (Table 2). However, multiple untargeted muta-
tions were identified during Dpo4-catalyzed bypass of M1dG
(Figure 3), similar to what was observed in bacterial and
mammalian cells.

FIGURE 4: Configuration of bases in the active site of Dpo4 3M1dG
ternary complexes. (A) The quality of the electron density from the
dGTP 3M1dG crystal structure is shown (gray wire mesh) with the
3Fo-2Fc map contoured to 1σ. Dpo4 (cyan) is shown in schematic
form in complex with primer-/template DNA (yellow carbons) and
calcium ions (blue spheres). (B) The quality of the electron density
from the 14C 3M1dG crystal structure is shown (gray wiremesh) with
the 3Fo - 2Fc map contoured to 1σ. Dpo4 (green) is shown in
schematic form in complex with primer-template DNA (yellow
carbons) and calcium ions (blue spheres). (C) The orientation of
the primer terminus (14C) relative to M1dG from the 14C 3M1dG
stucture is shown as viewed from the palm domain of Dpo4. (D)
Stacking interactions between the DNA residues in both structures
are shown.TheC 3Gpair at the primer terminus (blue) is shown in the
background, withM1dGand the dGTP 3Cpair (green) stacked in the
foreground along the helical axis. The 14th primer residue from
the 14C 3M1dG crystal structure (14C) is colored yellow. The M1dG
moiety is colored red in all panels for the sake of clarity.
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We have determined two crystal structures of Dpo4 in a
ternary complex with M1dG-modified DNA and an incoming
dGTP. M1dG exists in the ring-closed form in both of the crystal
structures (Figure 4). The first structure determined (dGTP 3
M1dG) reveals a typical type II ternary complex in which the
incoming dGTP is paired with the base to the 50 side of theM1dG
lesion. In an attempt to address whether the ring-opened
derivative of M1dG (N2-OPdG) is observed in the active site of
Dpo4, a cytosine was placed in the primer strand oppositeM1dG.
The Dpo4 active site is apparently not conducive to stabilization
of the ring-opened form of theM1dG adduct even when cytosine
is placed in a postinsertion context, as evidenced by the 14C 3
M1dG structure (Figure 4B). The lack of stable pairing between
dC and M1dG in the 14C 3M1dG structure precludes any ring
opening.

As has been noted before, Dpo4 has no significant hydrogen
bonding contacts with the purine/pyrimidine ring systems but
rather relies upon van der Waals interactions and hydrogen
bonding with the phosphate backbone and glycosidic moieties to
effectively manipulate the DNA template (39). Stabilization of
the incoming dNTP is primarily derived from hydrogen bonding
among the triphosphate moiety, the 30-hydroxyl group, and
positive centers in the finger and palm domain. In the absence
of any restrictive forces, the cytosine at the primer-template
junction is moved into a pocket between the DNA and the palm
domain of Dpo4 and does not readily catalyze ring opening of
M1dG to N2-OPdG. Such a conclusion is further supported by
the observation that dCTP insertion opposite M1dG is strongly
inhibited and by the large fraction of error-prone bypass events
identified by LC-MS.

NMR studies with M1dG-modified oligonucleotides have
shown conclusively that ring-opened N2-OPdG exists when
placed opposite cytosine and the pair is located in the center of
an 8 bp duplex (29). It seems reasonable to assume that ring
opening for a dC 3M1dG pair located at a ssDNA-dsDNA
junction is less likely because of thermal fluctuations (i.e., fraying)
at the end of a duplex. We wanted to determine whether Dpo4
could act to facilitate ring opening during bypass ofM1dG. It has
been suggested that ring opening occurs through a mechanism
that involves hydration at the N3 atom of cytosine (29, 40). It is
possible that a similarmechanismoccurs in the presence ofDpo4.
The small burst in product observed for dCTP insertion opposite
M1dG in the presteady state (Figure 2) and the relatively large
proportion of dC-containing productsmeasured byLC-MS/MS
(Figure 3) are consistent with the view that M1dG ring opening
occurs during insertion of dC. However, on the basis of the
crystal structure of Dpo4 bound to primer-template junction-
containing DNA (14C 3M1dG), the mechanism of ring opening
for M1dG-containing DNA in isolation may not be the most
favored pathway in the polymerase active site. Instead, the
thermodynamic stabilization of the M1dG 3dC pair that occurs
following polymerase bypass, when the pair is located in duplex
DNA,may bemore important for driving the ring opening event,
as judged by the extension kinetics (Table 3). It remains unclear
whether desolvation of dC or a spacious active site would more
greatly influence the failure to open the M1dG ring. The crystal
structure would suggest that alternative conformations do exist
during accurate bypass of M1dG, which would point to the
contribution of a more open active site. Although the ring-
opened dC 3N

2-OPdG conformation is not observed with Dpo4
(Figure 4), we cannot exclude the possibility that the ring-opened
derivative occurs in the active sites of other polymerases.

Similar to the results withM1dG, the exocyclic DNAadduct 1,
N2-ε-G has been shown to strongly block Dpo4 synthesis (27).
However, Dpo4-catalyzed bypass of 1,N2-ε-G yields almost enti-
rely -1 frameshift products by LC-MS/MS analysis, whereas
bypass ofM1dG resulted in a substantial fraction of the products
representing accurate bypass (Figure 3). Bypass ofM1dG yielded
a greater diversity of error-prone products than 1,N2-ε-G, with a
substantial population of “untargeted” misincorporations. In
fact, several of the products appear to lack any guidance from the
template sequence. However, the presence of accurate bypass
products indicates the possibility that at least some fraction of the
M1dG-adducted templates may exist in the ring-opened form.
Such a mechanism of accurate bypass would be consistent
with results showing that Dpo4 can accurately bypass a number
of N2-alkylG substrates, with a relatively modest decrease in
catalytic efficiency. The 14C 3M1dG structure cannot be cataly-
tically competent because the terminal 30-hydroxyl group is too
far removed from the R-phosphate of the incoming dNTP. It is
quite reasonable to assume that successful catalytic events occur
when the ring-opened N2-OPdG derivative is paired with dC.

Comparing our results with M1dG to those obtained with the
saturated 1,N2-propanodeoxyguanosine (PdG) provides some
insight into how dATP insertion might occur. PdG is a structural
analogue of γ-HOPdG and M1dG, but PdG does not undergo
ring opening (43). PdG is, therefore, a useful model of whatmight
happen during Dpo4-catalyzed bypass of an exclusively ring-
closed M1dG adduct. NMR studies have shown that PdG is
found in the syn conformation when placed opposite cytosine in
duplex DNA (44). Several type II structures of Dpo4 bound to
PdG containing template DNA have been determined (45), and
all of them show that PdG remains in the anti conformationwhen
complexed with Dpo4, similar to the structures for M1dG
reported here. Single-nucleotide insertion experiments reveal that
Dpo4 readily inserts dATP opposite PdG (45). Though we did
not determine the structure of an incoming dATP paired with
M1dG, it is possible that both PdG and M1dG assume the syn
orientation during insertion of dATP to form a Hoogsteen base
pair similar to what is observed during Dpo4-catalyzed insertion
of dATP opposite 7,8-dihydro-8-oxo-deoxyguanosine (28). Pre-
viously, steady-state kinetic analysis with human pol ι was
interpreted as supporting a syn conformation for PdG in the
active site of pol ι during bypass of the lesion (46). Furthermore, a
syn-oriented template guanosine with an N2-methylnaphthyl
moiety has been observed in the active site of Dpo4 (47). Thus,
Y-family pols, including Dpo4, can accommodate syn-oriented
guanosine adducts. The only other base inserted by Dpo4
opposite PdG is dGTP, and this is likely due to the fact that
dGTP can pair with dC to the 50 side of the adduct to form a type
II structure. Importantly, Dpo4 does not appear to insert dCTP
opposite PdG, based on the experiments reported. It seems likely
that Dpo4 can insert dCTP oppositeM1dGmore effectively than
PdG because ring opening can occur with the former but not the
latter moiety. Collectively, these results support the view that a
small fraction ofM1dGmay undergo ring opening during Dpo4-
catalyzed insertion of dCTP, as well as the idea that misinsertion
of dATP opposite M1dG proceeds through a Hoogsteen-like
base pair. We have previously reported that human pol η
bypasses M1dG in a highly error-prone fashion, inserting pri-
marily dATP opposite the adduct with a smaller proportion of
-1 frameshift events (48). Human pol η is more efficient at
insertion of dATP opposite M1dG than Dpo4. In addition,
human pol η appears to prefer dATP insertion opposite PdG,
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although the efficiency appears to be reduced relative to that of
unmodified DNA (49). It is of interest to determine if human pol
κ bypasses M1dG in a manner different from that of pol η for at
least two reasons: (i) it has been suggested that pol κ may be
important during bypass of N2-dG adducts (17, 50, 51), and
(ii) the N-clasp domain of pol κ could conceivably be important
for catalyzing ring opening ofM1dGby encircling the polymerase
active site.

In conclusion, our results show that Dpo4 can bypass the
exocyclicM1dG adduct in what is largely an error-prone fashion.
Similar to pol η, Dpo4 preferentially inserts dATP opposite
M1dG, but Dpo4 can also generate several other types of pro-
ducts, including -1 frameshift deletions and error-prone exten-
sion events. Importantly, Dpo4-catalyzed insertion of dCTP does
not readily induce ring opening of M1dG to form N2-OPdG
based on the efficiency and fidelitymeasured in kinetic assays and
the active site orientation observed in the crystal structure.
Ultimately, it is important to know which DNA polymerases
replicate M1dG in vivo and how often they are granted access to
the site of damage, as there are undoubtedly multiple enzymes at
work during bypass of this lesion, but the results obtained thus
far indicate that the mutagenic nature of M1dG is due in part to
the nonfacile nature of ring opening during translesion DNA
synthesis.
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Figures S1 and Tables S1-S29 detailing a large portion of the
LC-MS/MS results used to analyze full-length extension by
Dpo4 and single-nucleotide insertion experiments that sought to
distinguish M1dG and N2-OPdG bypass events. This material is
available free of charge via the Internet at http://pubs.acs.org.
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